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Abstract

In many object allocation problems, some of the objects may effectively be indistinguishable from

each other, such as with dorm rooms or school seats. In such cases, it is reasonable to assume that agents

are indifferent between identical copies of the same object. We call this setting “objective indifferences.”

Top trading cycles (TTC) with fixed tie-breaking has been suggested and used in practice to deal with

indifferences in object allocation problems. Under general indifferences, TTC with fixed tie-breaking is

not Pareto efficient nor group strategy-proof. Furthermore, it may not select the core, even when it exists.

Under objective indifferences, agents are always and only indifferent between copies of the same object.

In this setting, TTC with fixed tie-breaking maintains Pareto efficiency, group strategy-proofness, and

core selection. In fact, we present domain characterization results which together show that objective

indifferences is the most general setting where TTC with fixed tie-breaking maintains these important

properties.

1 Introduction
Important markets such as living donor organ transplants, dorm assignments, and school choice can be
modeled as a Shapley-Scarf market: each agent is endowed with an indivisible object (which we call “houses”)
and has preferences over the set of objects. The goal is to sensibly re-allocate these objects among the agents.
Monetary transfers are disallowed, and participants have property rights to their own endowments. In the
original Shapley and Scarf (1974) setting, agents have strict preferences over the houses. The usual stability
notion is the core; an allocation is in the core if no subset of agents would prefer to trade their endowments
among themselves. Gale’s top trading cycles (TTC) algorithm finds an allocation in the core. Roth and
Postlewaite (1977) further show that the core is non-empty, unique, and Pareto efficient. Roth (1982) shows
that TTC is strategy-proof; Bird (1984), Moulin (1995), Pápai (2000), and Sandholtz and Tai (2024) show
it is group strategy-proof. These properties make TTC an attractive algorithm for practical applications.
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The assumption that preferences are strict is quite strong. In particular, if the objects are not unique,
agents should naturally be indifferent. We present a model of Shapley-Scarf markets where there are in-
distinguishable copies of house “types.” The model restricts agents to be indifferent between copies of the
same house type, but never indifferent between copies of different house types. We call these preferences
“objective indifferences.” This captures important situations where the Shapley-Scarf model is applied. For
example, in dorm or public housing assignments, many units are effectively the same (e.g., two units with
the same floor plan in the same building). Likewise in school assignments, different slots at the same school
are indistinguishable. We see objective indifferences as a minimal model of indifferences, capturing the most
basic and plausible form of indifferences.

In the fully general setting where agents’ preferences may contain indifferences, TTC with fixed tie-
breaking is often used in practice; ties in preference orders are broken by some external rule. For example,
Abdulkadiroglu and Sönmez (2003) propose something similar in the setting of school choice with priorities.
However, TTC with fixed tie-breaking is not Pareto efficient nor group strategy-proof. Indeed, Ehlers
(2002) shows that these two properties are not compatible in Shapley-Scarf markets when agents have weak
preferences. In addition, the core of the market may be nonempty or non-unique. But even when core
allocations exist, TTC with fixed tie-breaking may not select one.

Objective indifferences adds structure to the general case of indifferences by constraining any indifferences
to be universal among agents. While the core still may not exist, it is essentially single-valued when it does
exist. We show that in Shapley-Scarf markets with objective indifferences, TTC with fixed tie-breaking
recovers Pareto efficiency and group strategy-proofness. It also selects the essentially unique core when it
exists, and selects an element in the weak core otherwise. We also show that the objective indifferences
setting is the most general setting such that TTC with fixed tie-breaking maintains any of these properties.

Others have have studied TTC under indifferences. In particular, Alcalde-Unzu and Molis (2011) and
Jaramillo and Manjunath (2012) propose two generalizations of TTC for the general indifferences setting.
Ehlers (2014) characterizes TTC in the general indifferences setting.

Our paper makes several important new contributions to the literature on Shapley-Scarf markets. First,
it defines and explores a new domain of preferences that accurately capture many real-world scenarios where
this model is applied. Second, it outlines the most general setting where TTC has no obvious drawbacks,
in the sense that it retains all of the properties that make it so appealing under strict preferences. Third,
it illustrates the underlying reason why weak preferences cause TTC to lose these properties: it is not
indifferences per se, but subjective indifferences that may differ across agents.

Section 2 presents the formal notation. Section 3 explains TTC with fixed tie-breaking. Section 4 provides
the main results. Section 5 concludes. Proofs of our results can be found in Appendix A.

2 Model

We present the model primitives. First we recount the classical Shapley and Scarf (1974) domain. Afterwards
we introduce our “objective indifferences” domain.

We now present the general model of a Shapley-Scarf market. Let N = {1, . . . , n} be a finite set of agents,
with generic member i. Let H = {h1, . . . , hn} be a set of houses, with generic member h. Every agent is
endowed with one object, given by a bijection w : N → H. The set of all endowments is W (N,H) or W for
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short. An allocation is an assignment of an object to each agent, given by a bijection x : N → H. The set
of all allocations is likewise X(N,H) or X. We denote x(i) = xi and w(i) = wi for short.

Each agent has preferences Ri over H. A preference profile is R = (R1, R2, ..., Rn). Let Ri be the set
of i’s possible preferences. A set RN

i of possible preference profiles is a domain. We restrict attention
in this paper to domains that can be expressed as RN

i for some Ri. That is, every agent has the same
set of possible preference orderings. If every Ri is the set of strict preference orderings, it is the classical
strict preferences domain. If every Ri is the set of weak preference orderings, it is the classical general
indifferences domain.

Our main domain is objective indifferences. Let H = {H1, H2, . . . ,HK} be a partition of H. An element
Hk of a partition is a block. Given H and H, denote η : H → H as the mapping from a house to the
partition element containing it; that is, η(h) = Hk if h ∈ Hk. For each strict linear order ≥ over H, we
derive weak preferences R≥ over H. Formally, for h, h′ ∈ H,

hR≥h
′ ⇐⇒ η(h) ≥ η(h′)

The partition H defines the house types. Ri(H) is set of all R≥ given H. We sometimes suppress (H) from the
notation when context makes it clear. Given H, R(H) := Ri(H)N is an objective indifferences domain.
Note that all agents are indifferent between houses in the same block of H and have strict preferences between
houses in different blocks. Because of this, we refer simply to “indifference classes” for the domain with the
understanding that everyone shares the same indifference classes.

2.1 Rules
This subsection recounts formalities on rules (mechanisms) and top trading cycles. Familiar readers may
safely skip this subsection.

A market is a tuple (N,H,w,R). A rule is a function f : R → X; given a preference profile, it produces
an allocation. When it is unimportant or clear from context, we suppress inputs from the notation. Denote
fi(R) to be i’s allocation; and fQ = {fi : i ∈ Q}. Fix a rule f and setting. We work with the following
axioms.

A rule is Pareto efficient if it always produces Pareto efficient allocations.

Pareto efficiency (PE). For all R ∈ R, there is no other allocation x ∈ X such that xiRifi for all i ∈ N

and xiPifi for at least one i.

Group strategy-proofness requires that no coalition of agents can collectively improve their outcomes by
submitting false preferences. Note that in the following definition, we require both the true preferences and
potential misreported preferences to come from the same set R.

Group strategy-proofness (GSP). For all R ∈ R, there do not exist Q ⊆ N and R′
Q such that

(R′
Q, R−Q) ∈ R and fq(R

′
Q, R−Q)Rqfq(R) for all q ∈ Q with fq(R

′
Q, R−Q)Pqfq(R) for at least one q.

Individual rationality models the constraint of voluntary participation. It requires that agents receive a
house they weakly prefer to their endowment.
Individual rationality (IR). For all w and R ∈ R, fiRiwi.
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We also define the core, which is a property of allocations. An allocation is in the core if there is no
subset of agents who could benefit from trading their endowments among themselves.

Definition 1. An allocation x is blocked if there exists a coalition N ′ ⊆ N and allocation x′ such that
wN ′ = x′

N ′ and for all i ∈ N ′, x′
iRixi, with x′

iPixi for at least one i. An allocation x is in the core if it is
not blocked.

The weak core requires that all members of a potential coalition are strictly better off.

Definition 2. An allocation x is weakly blocked if there exists a coalition N ′ ⊆ N and allocation x′ such
that wN ′ = x′

N ′ and for all i ∈ N ′, x′
iPixi. An allocation x is in the weak core if it is not weakly blocked.

The core property models the restriction imposed by property rights. Notice that individual rationality
excludes blocking coalitions of size 1. The last axiom is Core-selecting.

Core-selecting (CS). For all R ∈ R and w ∈ W , if the core is nonempty, then f(R) is in the core.

We will present characterization results of maximal domains on which all TTC≻ satisfy the axioms. By
a “maximal” domain, we mean the following.

Definition 3. A domain RN
i is maximal for an axiom A and a class of rules F if

1. each f ∈ F is A on RN
i , and

2. for any R̃N
i ⊃ RN

i , there is some f ∈ F that is not A on R̃N
i .

Note that this definition of maximality depends on both the axiom and the class of rules, which differs from
elsewhere in the literature. Typically, a maximal domain for some property is the largest possible domain on
which some rule exists which satisfies the desired property. We focus on a specific class of rules: top trading
cycles with fixed tie-breaking. Also note that we only consider domains that can written as RN

i , which is a
common definition. That is, every agent’s preferences are drawn from the same set of rankings.

3 Top trading cycles with fixed tie-breaking
In this paper, we analyze top trading cycles with fixed tie-breaking in the settings defined in the previous
section. For an extensive history, we refer the reader to Morill and Roth (2024). We briefly define TTC and
TTC with fixed tie-breaking.

Algorithm 1. Top Trading Cycles. Consider a market (N,H,w,R) under strict preferences. Draw a
graph with N as nodes.

1. Draw an arrow from each agent i to the owner (endowee) of his favorite remaining object.

2. There must exist at least one cycle; select one of them. For each agent in this cycle, give him the object
owned by the agent he is pointing at. Remove these agents from the graph.

3. If there are remaining agents, repeat from step 1.
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We denote this as TTC(R).
TTC is only well defined with strict preferences, as Step 1 requires a unique favorite object. In practice,

a fixed tie-breaking rule ≻ is often used to resolve indifferences. Given N , let ≻= (≻1, . . . ,≻n), where
each ≻i is a strict linear order over N . This linear order will be used to break indifferences between objects
(based on their owners). Then let Ri,≻i be given by the following. For any j ̸= j′, let wjPi,≻iwj′ if either

1. wjPiwj′ , or

2. wjIiwj′ and j ≻i j
′

Then Ri,≻i
is a strict linear order over the individual houses. Example 1 illustrates a tie-break rule. Let

R≻ = (R1,≻1
, . . . , Rn,≻n

). Given a fixed tie-breaking rule, TTC with fixed tie-breaking (TTC≻) is
TTC≻(R) ≡ TTC(R≻). That is, the tie-breaking rule is used to generate strict preferences, and TTC is
applied to the resulting profile. Formally, each tie-breaking profile ≻ generates a different rule.

Example 1. Let N = {1, 2, 3, 4}.

R1

w3, w4

w1, w2

+

≻1

1

2

3

4

→

R1,≻1

w3

w4

w1

w2

4 Results
In the general indifferences domain, TTC≻ is not Pareto efficient, core-selecting, nor group strategy-proof.
However, we show that in the objective indifferences domain, TTC≻ satisfies all three properties. Further-
more, we show that objective indifferences characterizes the set of maximal domains on which TTC≻ is PE
and CS, and characterizes the set of “symmetric-maximal” domains on which TTC≻ is GSP.

4.1 Pareto efficiency and core-selecting
When we relax the assumption of strict preferences and allow for general indifferences, TTC≻ loses two
of its most appealing properties: Pareto efficiency and core-selecting. However, in the intermediate case
of objective indifferences, TTC≻ retains these two properties, regardless of the tie-breaking rule ≻ chosen.
Moreover, on any larger domain, TTC≻ loses Pareto efficiency and core-selecting. Thus, we show that it is
not indifferences per se, but rather subjective evaluations of indifferences, which cause TTC≻ to lose these
properties.

We first demonstrate that TTC≻ is not Pareto efficient under general indifferences. Example 2 gives the
simplest case.

Example 2. Let N = {1, 2} and preferences be given by w1I1w2 and w1P2w2. Let ≻i= (1, 2) for both
agents. In the first step of TTC≻(R), both agents point to agent 1. Agent 1 forms a self-cycle and is
therefore assigned to w1. In the second round, agent 2 forms a self-cycle and is assigned to w2. Therefore,
the TTC≻ allocation is x = (w1, w2), which is Pareto dominated by x′ = (w2, w1).
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The example illustrates the challenge with indifferences – TTC≻ may not take advantage of Pareto gains
made possible by the indifferences. However, under objective indifferences, if any agent is indifferent between
two houses, then all agents are indifferent between those two houses. Therefore, objective indifferences rules
out situations like in Example 2.

Under general indifferences, the set of core allocations may not be a singleton; there may be no core
allocations or there may be multiple. As Example 2 demonstrates, even when the core of the market is
non-empty, TTC≻ may still fail to select a core allocation.1 Likewise, under objective indifferences, the
set of core allocations may be empty or multi-valued, as Example 3 illustrates. However, under objective
indifferences, if the core is nonempty then TTC≻ selects a core allocation for any tie-breaking rule ≻. This
stands in contrast to the result from Ehlers (2014) for general indifferences, where TTC≻ is only guaranteed
to select an allocation in the weak core.

Example 3. Let R be given by the following.

R1 R2 R3

w2, w3 w1 w1

w1 w2, w3 w2, w3

It is straight forward to verify that the core of the market is empty.

In fact, the objective indifferences setting characterizes the entire set of maximal domains on which
TTC≻ is Pareto efficient and core-selecting for any tie-breaking rule ≻. That is, if all TTC≻ are PE/CS on
some domain RN

i , then it must be an objective indifferences domain or a subset of one. Conversely, for any
superset of an objective indifferences domain, there is some tie-break rule ≻ such that TTC≻ loses PE/CS.

Theorem 1. The following are equivalent:

1. RN
i is an objective indifferences domain.

2. RN
i is a maximal domain on which all TTC≻ are Pareto efficient.

3. RN
i is a maximal domain on which all TTC≻ are core-selecting.

Proof. See Appendix A.1.

Moreover, under objective indifferences, the core is essentially single-valued when it exists, in the sense
that all agents are indifferent between their assignments under any core allocations (see Sönmez (1999)). In
other words, the set of core allocations are just permutations of identical copies.

Corollary 1. For any two allocations x ̸= y in the core of an objective indifferences market, xiIiyi for all
i ∈ N .

Proof. See Appendix A.1.

As Example 3 shows, the core of an objective indifferences market may be empty. However, when the
core is empty, all TTC≻ select a weak core allocation.

Corollary 2. For any objective indifferences market, all TTC≻ select an allocation in the weak core.

Proof. See Appendix A.1.
1It is straightforward to see that x′ = (w2, w1) is in the core of the market.
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4.2 Group strategy-proofness
TTC≻ also loses group strategy-proofness once we move from strict preferences to weak preferences. However,
in the intermediate case of objective indifferences, TTC≻ recovers group-strategyproofness.Further, TTC≻

is not GSP that any larger “symmetric” domain. A domain is symmetric if when h1Pih2 is allowed, then so
is h2Pih1. We argue that this is not an onerous modeling restriction.

First we present a simple example demonstrating that under general indifferences, TTC≻ is not group
strategy-proof. Example 4 shows how an agent can break his own indifference to benefit a coalition member
without harming himself.

Example 4. Let R and R′ be given by the following, and let Q = {1, 3}.

R1 R2 R3 R′
1

w2, w3 w1 w1 w3

w1 w2 w2 w2

w3 w3 w1

Let ≻i= (1, 2, 3) for all i. Then TTC≻(R) = (w2, w1, w3). But if 1 misreports R′
1, then TTC≻(R

′) =

(w3, w2, w1). Then 1 is indifferent, and 3 is strictly better off.

Objective indifferences excludes situations like Example 4 in two ways. First, it eliminates the possibility
that one agent is indifferent between two houses while another has a strict preference. Second, it constrains
the possible set of misreports available to a manipulating coalition, since agents can only report indifference
among all houses in the same indifference class given by H.2 Our next result characterizes the set of
symmetric-maximal domains on which all TTC≻ are GSP.

Before presenting our result, we must define “symmetric” and “symmetric-maximal” domains.

Definition 4. A domain R is symmetric if for any h1, h2 ∈ H, if there exists Ri ∈ Ri such that h1Pih2,
then there also exists R′

i ∈ Ri such that h2P
′
ih1.

Definition 5. A domain RN
i is symmetric-maximal for an axiom A and a class of rules F if

1. RN
i is symmetric,

2. each f ∈ F is A on RN
i , and

3. for any symmetric R̃N
i ⊃ RN

i , there is some f ∈ F that is not A on R̃N
i .

In practical applications, symmetry is a natural restriction to place on the domain; if it is possible
that agents might report strictly preferring some house h to another house h′, we should not preclude the
possibility they strictly prefer h′ to h. Indeed, the point of mechanism design is that preferences are unknown
and must be solicited. It is easy to see that objective indifferences domains are symmetric. Compared to
maximality, symmetric-maximality restricts the possible expansions of objective indifferences domains that
we must consider.

Theorem 2. RN
i is a symmetric-maximal domain on which all TTC≻ are group strategy-proof if and only

if it is an objective indifferences domain.
2The constraint on agents’ reports is an important difference from Ehlers (2002).
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Proof. See Appendix A.2.

Our proof uses similar reasoning to the proof in Sandholtz and Tai (2024) that TTC is group strategy-
proof under strict preferences. Any coalition requires a “first mover” to misreport, but this agent must
receive an inferior house to the one he originally received. In the following example, we note that objective
indifferences domains are not maximal domains on which all TTC≻ are GSP.

Example 5. Consider H = {h1, h2} and H = {{h1, h2}}. Let R′
i = Ri(H) ∪ (h1Ph2). That is, expand

the domain by including the ordering h1Ph2. It can be verified that TTC≻ is still group strategy-proof for
any tie-breaking profile ≻. Note that this expanded domain is not symmetric, since R′

i does not contain the
preference ordering (h2Ph1).

If both agents have the same preferences, then there is clearly no possible group manipulation. Without
loss of generality, assume wi = hi. Let ≻i: (1, 2) for both i. Consider two possible (true) preference profiles:

R1 R2

h1 h1, h2

h2

or
R1 R2

h1, h2 h1

h2

In the first case, there is no improving allocation since both agents receive a top-ranked house. In the second
case, it would be advantageous for agent 1 to point at h2 and leave h1 for agent 2, but this is not possible,
since this preference ranking is not available in R′. It can also be verified that no other tie-breaking rule ≻
allows an improving coalition.

5 Conclusion
The Shapley-Scarf market is a classic model in economic theory with applications to important markets like
housing assignment, school choice, and organ exchange When agents may be indifferent between objects,
TTC with fixed tie-breaking is a commonly proposed mechanism. Unfortunately, it does not retain Pareto
efficiency, group strategy-proofness, or core selection.

We introduce a new domain of preferences, “objective indifferences,” which captures situations where
there are identical, indistinguishable copies of objects. Objective indifferences reflects many of the real-life
applications of Shapley-Scarf markets. (Consider, for example, housing assignment with many indistinguish-
able dorm rooms.) We show that TTC with fixed tie-breaking preserves the aforementioned properties –
Pareto efficiency, group strategy-proofness, and core selection – on objective indifferences domains. More-
over, Pareto efficiency and core selection fail on any more general domains. While group strategy-proofness
is preserved on some more general domains, it fails on any more general domain that is “symmetric.”

It is remarkable that the maximal domains on which TTC satisfies these three distinct properties (essen-
tially) coincide. We therefore view objective indifferences domains as the most general possible setting where
TTC can be applied without any tradeoffs. Moreover, we interpret our results as showing that it subjective
indifferences, not indifferences themselves, which cause issues for TTC when we relax the assumption of
strict preferences.

Our paper opens interesting new lines of inquiry. For example, understanding tradeoffs in the selection
of the partition H given the set of objects H. In some cases, there may be some ambiguity: are two dorms
with the same floor plan, but on different floors of the same building equivalent? Inappropriately combining
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indifference classes can lead to efficiency losses in the spirit of Example 2. On the other hand, splitting
indifference classes can allow group manipulations like in Example 4. We leave formal results as future work.
We also leave an axiomatic characterization of TTC≻ on objective indifferences as future work.
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Appendix A Proofs

We provide proofs for the results in the main text. Given a market and TTC≻(R), denote Sk(R) as the kth
cycle executed in TTC≻(R).3 Note that individual rationality (IR) of TTC≻ follows immediately from IR
of TTC and the fact that TTC≻(R) ≡ TTC(R≻).

We note a fact about x = TTC≻(R) which we appeal to in some proofs: if i ∈ Sℓ(R) and hPixi, then h

must have been assigned at some step before step ℓ. This follows from the definitions; hPixi implies hPi,≻xi,
and TTC≻(R) ≡ TTC(R≻). Under TTC(R≻), an object h such that hPi,≻xi must have been assigned prior
to step ℓ, otherwise i would have pointed to h’s owner.

Appendix A.1 Pareto efficiency and core-selecting
Theorem 1. The following are equivalent:

(1) RN
i is an objective indifferences domain.

(2) RN
i is a maximal domain on which all TTC≻ are Pareto efficient.

(3) RN
i is a maximal domain on which all TTC≻ are core-selecting.

The result is trivial for |N | = 1, so assume |N | ≥ 2. First we show that statements (1) and (2) are equivalent,
then we should that statements (1) and (3) are equivalent.
Part 1: (1) ⇐⇒ (2)

Proof. First we show that for any objective indifferences domain, all TTC≻ are PE. Consider any
(N,H,w) and fix some tie-breaking rule ≻. Let H be any partition of H and let R ∈ R(H). If
H = {H}, the result is trivial, so suppose the partition has at least two blocks. Let x = TTC≻(R),
and suppose that some feasible allocation y Pareto dominates x. Let W = {i : yiPixi} be the set of
agents who strictly improve under y, which must be nonempty. Let i ∈ W be the first agent in W

assigned during the process of TTC≻(R). If i ∈ Sk(R) and yiPixi, then i) η(yi) ̸= η(xi), and ii) yi

was assigned prior to step k. Therefore, there must be an agent j in ∪k−1
ℓ=1Sℓ(R) for whom xj ∈ η(yi)

but yj /∈ η(yi). Since y Pareto dominates x, this implies yjPjxj . But then j ∈ W , a contradiction.

Next we show that for any domain R̃N
i where R̃i ⊈ Ri(H) for any H, TTC≻ is not PE on R̃N

i .
Fix (N,H). Without loss of generality, assume wi = hi. If R̃i ⊈ Ri(H) for any H, it must contain
two orderings R∗, R∗∗, such that for some h1, h2 ∈ H, we have h1I∗h2 but h1P∗∗h2.

Taking only the existence of R∗, R∗∗ ∈ R̃i for granted, we find a preference profile R ∈ R̃N
i and

tie-breaking profile ≻ such that TTC≻(R) is not Pareto efficient. Define A = {i : wiR∗w1} \ {2} and
B = N \ A. Note that 1 ∈ A and 2 ∈ B. Consider the preference profile R where Ri = R∗ if i ∈ A

and Ri = R∗ if i ∈ B. Define a tie-breaking profile ≻ such that i ≻i j for all i ̸= j.

Claim 1. TTC≻(R) = w.

Proof. Let x = TTC≻(R). First we show that xi = wi for all i ∈ A. Let WA = {i ∈ A : xi ̸=
wi}. Take some agent i ∈ WA such that wiR∗wj for all j ∈ WA. By construction of ≻, we

3Note that Sk may not be unique, since multiple cycles may appear in step 2 of Algorithm 1.

10



know that xiIiwi if and only if xi = wi. Therefore by individual rationality, xi ̸= wi implies
xiPiwi. Let xi = wj . Obviously, xj ̸= wj . Also, since Ri = R∗ and wjPiwiRiw1, j ∈ A. But
then j ∈ WA and wjP∗wi, a contradiction.

Next we show that xi = wi for all i ∈ B. Let WB = {i ∈ B : xi ̸= wi}. Take some agent
i ∈ WB such that wiR∗∗wj for all j ∈ WB . By construction of ≻, we know that xiIiwi if and
only if xi = wi. Therefore by individual rationality, xi ̸= wi implies xiPiwi. Let xi = wj .
Obviously, xj ̸= wj . Also, since xi = wi for all i ∈ A, we know j ∈ B. But then j ∈ WB and
wjP∗∗wi, a contradiction.

However, note that w1P2w2 and w1I1w2, so TTC≻(R) is Pareto dominated by (w2, w1, w3, ..., wn).

Part 2: (1) ⇐⇒ (3)
Proof. First we show that for any objective indifferences domain, all TTC≻ are CS. Consider any
(N,H,w) and fix some tie-breaking rule ≻. Let H be any partition of H and let R ∈ R(H). If
H = {H}, the result is trivial, so suppose the partition has at least two blocks.

Suppose that the core of (N,H,w,R) is non-empty and contains some allocation y. Denote x =

TTC≻(R). We will show that xiIiyi (⋆) for all i by induction on the steps of TTC≻(R).

Step 1 All i ∈ S1(R) received one of their top-ranked objects, so xiRiyi. Suppose (⋆) is not
true for S1(R). Then there is some i ∈ S1(R) such that xiPiyi. But then S1(R) and x block
against y, a contradiction.

Step k Suppose that (⋆) is true for all steps before k. Suppose for some i ∈ Sk(R) we have
yiPixi. Then yi was assigned before step k. Further, η(yi) ̸= η(xi). (Otherwise, it could not be
that yiPixi.) So if yi is assigned to i under y, there must be an agent j in ∪k−1

ℓ=1Sℓ(R) for whom
xj ∈ η(yi) but yj /∈ η(yi). But then it cannot be that yjIjxj , a contradiction.4 Thus we have
that xiRiyi for all i ∈ Sk(R). Suppose (⋆) is not true for Sk(R). Then there is some i ∈ Sk(R)

such that xiPiyi. But then Sk(R) and x block against y, a contradiction.

Thus xiIiyi for all i. (Since y was an arbitrary allocation in the core, this also proves Corollary 1.)

Next we show that for any domain R̃N
i where R̃i ⊈ Ri(H) for any H, TTC≻ is not CS on R̃N

i .
Fix (N,H). Without loss of generality, assume wi = hi. If R̃i ⊈ Ri(H) for any H, it must contain
two orderings R∗, R∗∗, such that for some h1, h2 ∈ H, we have h1I∗h2 but h1P∗∗h2.

Define A,B ⊆ N , and R ∈ R̃N
i exactly as we did in Part 1. By Claim 1, TTC≻(R) = w. However,

TTC≻(R) is blocked by x′ = (w2, w1, w3, ..., wn). It remains to show that x′ is in the core.
Suppose there is a coalition Q and allocation x′′ that blocks x′. Define W = {i ∈ Q : x′′

i Pix
′
i}.

Let WA = W ∩ A and let WB = W ∩ B. Note that for all i ∈ A, x′
iR∗w1. Among the agents in WA,

let i be some agent such that x′′
i R∗x

′′
j for all other j ∈ WA. Since i receives x′′

i under x′′, there must
be some agent j ∈ Q such that x′

jI∗x
′′
i but ¬(x′′

j I∗x
′
j). Note that j ∈ Q ∩ A; if j ∈ B, then w1R∗x

′
j ,

contradicting x′
jI∗x

′′
i since x′′

i P∗x
′
iR∗w1. Also, no agent in Q is worse off under x′′, so x′′

jP∗x
′
j . But

then j ∈ WA and x′′
jP∗x

′
jI∗x

′′
i , contradicting that x′′

i R∗x
′′
j for all other j ∈ WA. Therefore, WA = ∅

and x′′
i I∗x

′
i for all i ∈ Q ∩A.

Among the agents in WB , let i be some agent such that x′′
i R∗∗x

′′
j for all other j ∈ WB . Since

i receives x′′
i under x′′, there must be some agent j ∈ Q such that x′

jI∗∗x
′′
i but ¬(x′′

j I∗∗x
′
j). Since

4This is where objective indifferences is used – this claim fails in general indifferences.
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x′′
i I∗x

′
i for all i ∈ Q∩A, j ∈ Q∩B. Moreover, since no agent in Q is worse off under x′′, it must that

x′′
jP∗∗x

′
j . But then j ∈ WB and x′′

jP∗∗x
′
jI∗∗x

′′
i , contradicting that x′′

i R∗∗x
′′
j for all other j ∈ WB . So

WB = ∅. Then W = WA ∪WB = ∅, contradicting that Q and x′′ block x′.

Corollary 2: For any objective indifferences market, all TTC≻ select an allocation in the weak core.

Proof. Consider any (N,H,w) and fix some tie-breaking rule ≻. Let H be any partition of H and let
R ∈ R(H). Denote x = TTC≻(R). Suppose there is a weak blocking coalition Q ⊆ N and allocation y

such that wQ = yQ and yiPixi for all i ∈ Q. Let i be the first agent in Q assigned during the process of
TTC≻(R). If i ∈ Sℓ(R) and yiPixi, then yi was assigned before step ℓ. But yi = wj for some j ∈ Q, so j

was assigned before i, a contradiction.

Appendix A.2 Group strategy-proofness
We first review an important property of TTC≻ and state a useful lemma. Let L(h,Ri) = {h′ ∈ H : hRih

′}
be the lower contour set of a preference ranking Ri at house h.

Monotonicity (MON). A rule f is monotone if, for any R and R′ such that L(fi(R), Ri) ⊆ L(fi(R), R′
i)

for all i, then f(R) = f(R′).

That is, a rule f is monotone if, whenever any set of agents move up their allocations in their rankings,
the allocation remains the same. It is straightforward to show that TTC is monotone for strict preferences.
Then, since TTC≻(R) ≡ TTC(R≻) for any R and ≻, it follows directly that TTC≻ is monotone.

The following result is adapted from Sandholtz and Tai (2024), who show it for TTC with strict prefer-
ences. Here, we simply adapt it to TTC≻ .

Lemma 1 (Sandholtz and Tai (2024)). For any R,R′, let x = TTC≻(R) and x′ = TTC≻(R
′). Suppose

there is some i such that x′
iPi,≻xi. Then there exists some agent j and house h such that hP ′

j,≻xj and
xjPj,≻h.

Theorem 2. RN
i is a symmetric-maximal domain on which all TTC≻ are group strategy-proof if and only

if it is an objective indifferences domain.

Proof. First we show that for any objective indifferences domain, all TTC≻ are GSP. Consider any (N,H,w)

and fix some tie-breaking rule ≻. Let H be any partition of H and let R ∈ R(H). If |N | = 1 or H = {H},
the result is trivial, so suppose that |N | ≥ 2 and that the partition has at least two blocks. Without loss of
generality, assume wi = hi for all i.

Suppose Q ⊆ N reports R′
Q where (R′

Q, R−Q) ∈ R(H). Denote R′ = (R′
Q, R−Q) and x′ = TTC≻(R

′).
We will show that if x′

iPixi for some i ∈ Q, then xjPjx
′
j for some j ∈ Q.

Let R′′ be the preference profile in R(H) such that each R′′
i top-ranks η(x′

i) and otherwise preserves
the ordering of Ri. Let x′′ = TTC≻(R

′′). By monotonicity of TTC≻ , x′′ = x′. Therefore, x′′
i Pixi, and

consequently, x′′
i Pi,≻i

xi. Applying Lemma 1, there must be some j ∈ Q and h ∈ H such that xjPj,≻j
h but

hP ′′
j,≻j

xj . Note that h /∈ η(xj); if it were, then for any R,R′′ ∈ R(H), xjPj,≻jh if and only if xjP
′′
j,≻j

h.
Therefore, xjPjh and hP ′′

j xj .5 The only change from Rj to R′′
j is to top-rank η(x′

j), so it must be that
h ∈ η(x′

j). But then xjPjx
′
j , as desired.

5This is where the restriction to objective indifferences is used. Under general indifferences, this is not necessarily true.
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Next we show that for any symmetric domain R̃N
i where R̃i ⊈ Ri(H) for any H, TTC≻ is not GSP

on R̃N
i . Fix (N,H). Without loss of generality, let wi = hi for all i. If R̃i ̸⊆ Ri(H), then it must

contain two orderings R∗, R∗∗ such that for some h1, h2 ∈ H we have h1I∗h2 but h1P∗∗h2. The symmetric
requirement also necessitates that R̃i contains some R∗∗∗ such that h2P∗∗∗h1. Taking only the existence of
R∗, R∗∗, R∗∗∗ ∈ R̃i for granted, we find a preference profile R ∈ R̃N

i and tie-breaking profile ≻ such that
TTC≻(R) is not group strategy-proof.

Define A = {i : wiR∗w1} \ {2}, B = {i : w1P∗wi, wiR∗∗w1}∪{2}, and C = N \ (A∪B). Note that 1 ∈ A

and 2 ∈ B. Consider the preference profile R where Ri = R∗ for all i ∈ A, Ri = R∗∗ for all i ∈ B, and
Ri = R∗∗∗ for all i ∈ C. Let ≻ be any tie-breaking profile such that i ≻i j for all i ̸= j.

Claim 2. TTC≻(R) = w.

Proof. The proof is similar to the proof of Claim 1. Let x = TTC≻(R). First we show that xi = wi

for all i ∈ A. Let WA = {i ∈ A : xi ̸= wi}. Take some agent i ∈ WA such that wiR∗wj for all j ∈ WA.
By construction of ≻, we know that xiIiwi if and only if xi = wi. Therefore by individual rationality,
xi ̸= wi implies xiPiwi. Let xi = wj . Obviously, xj ̸= wj . Also, since Ri = R∗ and wjPiwiRiw1,
j ∈ A. But then j ∈ WA and wjP∗wi, a contradiction.

Next we show that xi = wi for all i ∈ B. Let WB = {i ∈ B : xi ̸= wi}. Take some agent i ∈ WB

such that wiR∗∗wj for all j ∈ WB . By construction of ≻, we know that xiIiwi if and only if xi = wi.
Therefore by individual rationality, xi ̸= wi implies xiPiwi. Let xi = wj . Obviously, xj ̸= wj . Also,
since i) xi = wi for all i ∈ A, and ii) Ri = R∗∗ and wjPiwiRiw1, we know j ∈ B. But then j ∈ WB

and wjP∗∗wi, a contradiction.
Finally, we show that xi = wi for all i ∈ C. Let WC = {i ∈ C : xi ̸= wi}. Take some agent i ∈ WC

such that wiR∗∗∗wj for all j ∈ WC . By construction of ≻, we know that xiIiwi if and only if xi = wi.
Therefore by individual rationality, xi ̸= wi implies xiPiwi. Let xi = wj . Obviously, xj ̸= wj . Also,
since xi = wi for all i ∈ A∪B, we know j ∈ C. But then j ∈ WC and wjP∗∗∗wi, a contradiction.

Claim 3. Let R′
1 = R∗∗∗ and R′ = (R′

i, R−i). TTC≻(R
′) = (w2, w1, w3, ..., wn).

Proof. Consider the process of TTC≻(R). Without loss of generality, assume that we only executed
agent 1’s (self-)cycle when there were no other possible (self-)cycles to execute. Suppose this took
place at step k of TTC≻(R). If so, then we know w1Piwi for all i who remained at step k. Therefore,
by construction of R, the set of remaining agents at step k was Nk = {1, 2} ∪ {i ∈ C : w1P∗∗∗wi}.
Thus, at step k, agents 1 and 2 pointed at agent 1 while all other agents pointed at agent 2.6 After,
at step k + 1, agent 2 formed a self-cycle and was assigned to his endowment.

Now consider the process of TTC≻(R
′). Assume we follow the same order of assignment as before.

Since only agent 1’s preferences change from R to R′, we know that steps 1 through k − 1 proceed
as before. Then, at step k, the same set Nk of agents remains. R′

i = R∗∗∗, so agent 1 now points
at agent 2 and forms a trading cycle. Agents 1 and 2 swap houses and after, the process continues
identically to TTC≻(R). So TTC≻(R

′) = (w2, w1, w3, ..., wn).

TTC≻(R
′) Pareto dominates TTC≻(R) at R, so GSP obviously fails.

6Recall that w2P∗∗∗w1.
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Appendix B Relation to school choice with priorities
We briefly note that TTC in the objective indifferences setting is not identical to TTC in the school choice
with priorities setting. Intuitively, in objective indifferences the fixed tie-breaking rule determines for i whom
to point at; conversely, a school priority determines who points at i. Consider an example with 3 schools
and 4 students.

Example 6. Let the set of schools (objects) be H = {A,B,C}, with C having two slots. Let the students
be N = {a, b, c1, c2}, where a is “endowed” with A, and so on.

Let the school priorities be given by
A B C

a b c1

b a c2

c1 c2 a

c1 c1 b

Alternatively, let a fixed tie-breaking rule ≻ be given by
≻a ≻b ≻c1 ≻c2

c1 c2 c1 c1

c2 c1 c2 c2

Finally, compare two alternatives for student preferences
Ra Rb Rc1 Rc2

C C A A

A A B B

B B C C

and

R′
a R′

b R′
c1 R′

c2

C C B B

A A A A

B B C C

TTC with school priorities results in Ac1, Bc2, Cab and Ac2, Bc1, Cab under R and R′ respectively.
Crucially, c1 gets the preferred school in either case, since it depends on school C’s priority. TTC≻ results
in Ac1, Bc2, Cab and Ac1, Bc2, Cab under R and R′ respectively. Either c1 or c2 will get the more preferred
school, since it depends on a’s or b’s tie-breaking rule.
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