
House-Swapping with Commodified Objects∗

Will Sandholtz† Andrew Tai‡

February 2025

Abstract

We study the exchange of indivisible objects (“house-swapping”) when the goods may be commodified.

In many house-swapping markets, some objects may effectively be indistinguishable from one another,

as with dorm rooms or school seats. Thus, all agents are indifferent between copies of the same variety.

We call this setting “commodified objects”. Top trading cycles (TTC) with fixed tie-breaking has been

suggested and used in practice to deal with indifferences in house-swapping problems. However, with

general indifferences, TTC with fixed tie-breaking is not Pareto efficient or group strategy-proof. Further,

it may not select the strict core, even when it exists. Under commodified goods, agents are always and

only indifferent between copies of objects. In this setting, TTC with fixed tie-breaking maintains Pareto

efficiency, group strategy-proofness, and strict core selection. We also show that in any more general

setting, TTC with fixed tie-breaking will not retain any of these properties.

1 Introduction

Important markets such as living donor organ transplants, dorm assignments, and school choice can be
modeled as “house-swapping” problems. In a house-swapping problem, each agent is endowed with an
indivisible object (called a “house”) and has preferences over the set of objects. The objective is to sensibly
re-allocate these objects among the agents. Monetary transfers are disallowed, and participants have property
rights to their own endowments. shapley_cores_1974 first introduce house-swapping when agents have
strict preferences over houses. The usual stability notion is the core; an allocation is in the core if no
subset of agents would prefer to trade their endowments among themselves. Gale’s top trading cycles (TTC)
algorithm finds an allocation in strong core. roth_weak_1977 further show that the strict core is non-
empty, unique, and Pareto efficient. Roth1982 shows that TTC is strategy-proof; moulin1995; bird1984;
sandholtztai24; papai2000 show it is group strategy-proof. These properties make TTC a normatively
attractive algorithm.

The assumption that preferences are strict is quite strong. In particular, if the houses are not unique,
agents should naturally be indifferent. We present a model of house-swapping where there are indistinguish-
able copies of objects (“types”). The model restricts agents to be always indifferent between copies of the
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same object, but never between distinct objects. We call this problem “house-swapping with commodified
objects”. This models important situations where the house-swapping model is applied in practice. For
example, in dorm or public housing assignments, many units are effectively the same (same floor plan in the
same building, for example). Likewise in school assignments, different slots at the same school are indistin-
guishable. We see commodified goods as a minimalist model of indifferences, where indifferences are most
plausible (or perhaps undeniable!).

In the fully general setting where agents’ preferences may contain any indifferences, TTC with fixed tie
breaking is often used in practice; ties in preference orders are broken by some external rule. abdulkadiroglusonmez2003
propose it in the setting of school choice with priorities. However, it is not Pareto efficient or group strategy-
proof. Indeed, ehlers2002coalitional shows that these two properties are not compatible in house-swapping
with indifferences. Additionally, the strict core may be empty or non-unique, and TTC with fixed tie breaking
may not select a strict core allocation when one exists.

Commodified goods adds structure to the general case of indifferences by constraining any indifferences to
be universal among agents and by limiting the set of preference rankings agents may submit. While the strong
core still may not exist, it is essentially unique when it does exist. We show that in house-swapping with
commodified goods, TTC with fixed tie-breaking recovers Pareto efficiency and group strategy-proofness. It
also selects the unique strong core when it exists, and selects an element in the weak core otherwise. We
also show that the commodified goods setting is a maximal setting such that these properties hold, in the
sense that allowing a superset of possible preference orderings breaks each property.

In summary, we present a reasonable model of indifferences, commodified goods, which can capture set-
tings where house-swapping is used in practice. Further, there is an advantage in working in the commodified
goods setting over the more general setting of full indifferences, as TTC with fixed tie breaking preserves
Pareto efficiency, core selection, and group strategyproofness. Thus we also provide a strong normative
argument for using TTC with fixed tie-breaking in settings like school choice and dorm assignment.

In addition to the papers already mentioned, our paper contributes to a broader literature on object as-
signment problems. A number of important papers deal with the object allocation problem without endow-
ments; e.g. papai2000 and ehlersklauspapai. Recently, others have proposed mechanisms for the house
swapping model with indifferences; in particular, quint_houseswapping_2004 and jaramillo-manjunath.

Section 2 presents the formal notation. Section 3 explains TTC with fixed tie breaking. Section 4 provides
the main results. Section 5 concludes.

2 Model

We present the model primitives. First we recount the classical shapley_cores_1974 domain. Afterwards
we introduce our “commodified objects” domain.

We now present the general house-swapping model (with distinguishable objects). Let N = {1, . . . , n} be
a finite set of agents, with generic member i. Let H = {h1, . . . , hn} be a set of houses, with generic member
h. Every agent is endowed with one object, given by a bijection w : N → H. The set of all endowments is
W (N,H) or W for short. An allocation is an assignment of an object to each agent, given by a bijection
x : N → H. The set of all allocations is likewise X(N,H) or X. We denote x(i) = xi and w(i) = wi for
short.
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Each agent has preferences Ri over H. A preference profile is R = (R1, R2, ..., Rn). Let Ri be the set
of i’s possible preferences. A set Ri of possible preference orderings is a domain. we restrict attention in
this paper to preference profiles drawn from RN

i ; that is, every agent has the same set of possible preference
orderings. If every Ri is the set of strict preference orderings, it is the classical strict preferences domain.
If every Ri is the set of weak preference orderings, it is the classical general indifferences domain.

Our main domain is commodified objects. Let H = {H1, H2, . . . ,HK} be a partition of H. Given H

and H, denote η : H → H as the mapping from a house to the partition containing it; that is, η(h) = Hk

if h ∈ Hk. Each agent i has a strict linear order ≥i over H, and preferences over H are derived from this.
Formally, for h, h′ ∈ H,

hRih
′ ⇐⇒ η(h) ≥i η(h

′)

The partition H defines the house types. Ri(H) is set of preferences given by the partition; we sometimes
suppress (H) from the notation when context makes it clear. Given H, R(H) := Ri(H)N is a commodified
objects domain. Note that all agents are indifferent between houses in the same partition and have strict
rankings between houses in different partitions. Because of this, we refer to indifference classes for the
domain with the understanding that everyone shares the same indifference classes. In this notation, we treat
the commodified objects as having identities. I.e. we keep track of the objects in H1; however, the objects
are indistinct and always have the same welfare implications.

Commodified objects models settings where some objects are indistinguishable to all participants. An
example is dorm rooms or public housing, where there may be many units of the same basic layout and
amenities.

2.1 Rules

This subsection recounts formalities on rules (mechanisms) and top trading cycles. Familiar readers may
safely skip this subsection.

A market is a tuple (N,H,w,R). A rule is a function f : R → X; given a preference profile, it produces
an allocation. When it is unimportant or clear, we suppress inputs from the notation. Denote fi(R) to be
i’s allocation; and fQ = {fi : i ∈ Q}. Fix a rule f and setting. We work with the following desiderata
(“axioms”).

A rule is Pareto efficient if it always produces Pareto efficient allocations.

Pareto efficiency (PE). For all R ∈ R, there is no other allocation x ∈ X such that xiRifi for all i ∈ N

and xiPifi for at least one i.

Strategy-proofness ensures no agent can improve his outcome by submitting false preferences. That is, agents
are weakly incentivized to tell the truth.

Strategy-proofness (SP). For all R ∈ R, for any q ∈ N and R′
q, fq(R)Rqfq(R

′
q, R−q).

Group strategy-proofness is stronger than SP. It requires that no coalition of agents can improve their
outcomes by submitting false preferences. Note that in the following, we require both the true preferences
and potential misreported preferences to come from the same set R.

Group strategy-proofness (GSP). For all R ∈ R, there do not exist Q ⊆ N and R′
Q such that

(R′
Q, R−Q) ∈ R and fq(R

′
Q, R−Q)Rqfq(R) for all q ∈ Q with fq(R

′
Q, R−Q)Pqfq(R) for at least one.
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Individual rationality models the constraint of voluntary participation. It requires that agents do at least as
well as their own endowments.

Individual rationality (IR). For all w and R ∈ R, fiRiwi.

We also define the core, which is a property of allocations. An allocation is in the core if there is no subset
of agents who would rather trade their endowments among themselves.

Definition 1. An allocation x is blocked if there exists a coalition N ′ ⊆ N and allocation x′ such that
w(N ′) = x′(N ′) and for all i ∈ N ′, x′

iRixi, with x′
iPixi for at least one. An allocation x is in the core if it

is not blocked.

The weak core is requires that all members of the coalition are strictly better off.

Definition 2. An allocation x is weakly blocked if there exists a coalition N ′ ⊆ N and allocation x′ such
that w(N ′) = x′(N ′) and for all i ∈ N ′, x′

iPixi. An allocation x is in the weak core if it is not weakly
blocked.

The core property models the restriction imposed by property rights. Notice that individual rationality
excludes blocking coalitions of size 1. The last axiom is core-selecting.

Core selecting (CS). For all R ∈ R and w ∈ W , f(R) is in the core, if the core is nonempty.

We will present results that commodified objects is a largest domain on which TTC≻ is PE or CS. It is
also “essentially” a largest domain on which TTC≻ is GSP (we will note the technicalities when we present
the result). By the “largest domain”, we mean the following.

Definition 3. A domain R = RN
i is (symmetric-) maximal for an axiom A and a rule f if:

1. f is A on RN
i

2. for any R̃i ⊋ Ri, f is not A on R̃N
i

3. (For symmetric-maximal: if hPih
′ ̸∈ R̃i but hPih

′ ∈ R̃i then also h′Pih ∈ R̃i.)

Note that this definition of maximality depends on both the domain and the rule f , which differs from
elsewhere in the literature. Also note that we restrict to the same set of possible preferences for every agent
in both the maximal domain and for any expanded domain, which is a common in the literature.

Symmetric maximality requires that if any indifference is broken, then both strict relations are added
to the domain. Of course, symmetric maximality is a weaker condition, as it restricts the possible domain
expansions. However, it is natural in a situation requiring preference solicitation to allow either ranking.
The third restriction rules out situations where some agents may have a strict ranking only in a particular
direction, while others are indifferent.1 Our results for PE and CS will be with respect to maximality. Our
GSP result is with respect to symmetric maximality.

1For example, a seat at a school with a scholarship is strictly preferred to a seat to the same school without one, unless a
student has outside funds.
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3 Top trading cycles with fixed tie breaking

In this paper, we analyze top trading cycles (with tie breaking) in the settings defined in the previous section.
For an extensive history, we refer the reader to MorillRoth24. We briefly define TTC and TTC with fixed
tie-breaking.

Algorithm 1. Top Trading Cycles. Consider a market (N,H,w,R) under strict preferences. Draw a
graph with N as nodes.

1. Draw an arrow from each agent i to the owner (endowee) of his favorite remaining object.

2. There must exist at least one cycle; select one of them. For each agent in this cycle, give him the object
owned by the agent he is pointing at. Remove these agents from the graph.

3. If there are remaining agents, repeat from step 1.

We denote this as TTC(R).
TTC is only well defined with strict preferences, as step 1 requires a unique favorite object. In practice,

a fixed tie breaking rule is often used to resolve indifferences. Given N , let ≻= (≻1, . . . ,≻N ), where each
≻i is a strict linear order over N . This linear order will be used to break indifferences between objects (based
on their owners). Then let Ri,≻ be given by the following. For any j ̸= j′, let wjPi,≻wj′ if either

1. wjPiwj′ , or

2. wjIiwj′ and j ≻i j
′

Then Ri,≻ is a strict linear order over the individual houses. Example 1 illustrates a tie-break rule. Let
R≻ = (R1,≻, . . . , RN,≻). Given a fixed tie breaking rule, TTC with fixed tie breaking (TTC≻) is
TTC≻(R) = TTC(R≻). That is, the tie breaking rule is used to generate strict preferences, and TTC is
applied to the resulting profile. Formally, each tie breaking profile ≻ generates a different TTC with fixed
tie breaking rule.

Example 1. Let N = {1, 2, 3, 4}.

R1

w3, w4

w1, w2

+

≻1

1

2

3

4

→

R1,≻

w3

w4

w1

w2

3.1 Relation to school choice with priorities

We briefly note that TTC with commodified goods is not identical to TTC with school choice with priorities.
Intuitively, the fixed tie-breaking rule determines for i whom to point at; while a school priority determines
who points at i. Consider an example with 3 schools and 4 students.

Example 2. Let the set of schools (objects) be H = {A,B,C}, with C having two slots. Let the students
be N = {a1, b1, c1, c2}, where a1 is “endowed” with A, and so on.
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Let the school priorities be given by
A B C

a b c1

b a c2

c1 c2 a

c1 c1 b

Alternatively, let a fixed tie breaking rule ≻ be given by
a b c1 c2

c1 c2 c1 c1

c2 c1 c2 c2
Finally, compare two alternatives for student preferences

a b c1 c2

C C A A

A A B B

B B C C

and

a b c1 c2

C C B B

A A A A

B B C C

TTC with school priorities results in Ac1, Bc2, Cab and Ac2, Bc1, Cab respectively. Crucially, c1 gets the
preferred school in either case, since it depends on school C’s priority. TTC≻ results in Ac1, Bc2, Cab and
Ac1, Bc2, Cab respectively. Either c1 or c2 will get the more preferred school, since it depends on a’s or b’s
tie breaking rule.

4 Results

In general, TTC≻ is not Pareto efficient, core selecting, nor group strategyproof. However, we show that
when preferences are restricted to the commodified objects domain, TTC≻ satisfies all three properties.
Furthermore, commodified objects is maximal on which TTC≻ is PE and CS, and symmetric-maximal on
which it is GSP.

We first illustrate that TTC≻ is not Pareto efficient in general indifferences. Example 3 gives the simplest
case.

Example 3. Let N = {1, 2} and preferences be given by w1I1w2, w1P2w2. Let ≻i= (1, 2) for both agents.
In the first round of TTC≻, both agents point to themselves. The allocation is x = (w1, w2), which is Pareto
dominated by x′ = (w2, w1).

The example illustrates the problem with indifferences – TTC≻ may not take advantage of Pareto gains
made possible by the indifferences. The commodified objects domain rules out these situations. Our first
main result is that TTC≻ is Pareto efficient in commodified objects.

Proposition 1. TTC≻ is PE in R(H) for any H and any tie-breaking profile ≻. For any H and ≻, R(H)

is a maximal domain on which TTC≻ is PE. Further, any other domain on which TTC≻ is PE for any
tie-breaking profile ≻ is a subset of some R(H).

Proof. Appendix.

The intuition is that commodified goods rules out situations like in Example 3. In contrast, under
commodified goods, agent 1 will have to leave his allocated indifference class in order to benefit agent 2.
Any more general domain will reintroduce this possibility.
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Our second result deals with the core. In general indifferences, the set of core allocations may not be a
singleton. There may be no core allocations or multiple. Likewise, the set of core allocations may be empty
or multi-valued in commodified objects, as Example 4 illustrates. However, the core is essentially unique
when it exists, in that all core allocations are re-arrangements of indistinguishable copies.

Example 4. Let R be given by the following.

R1 R2 R3

w2, w3 w1 w1

w1 w2, w3 w2, w3

It is straight forward to check that the core is empty.

Furthermore, TTC≻ always selects the core for any tie-breaking rule ≻ in commodified goods. This is in
contrast to the result from ehlers2014 for general indifferences, where only the weak core is guaranteed.

Proposition 2. Let x = TTC≻(R) and R ∈ R(H). For any ≻,

1. x is in the weak core.

2. if the core exists, then x is in the core. That is, TTC≻ is CS.

3. if y is in the core, then xiIiyi for all i ∈ N .

TTC≻ is CS in R(H) for any H and any tie-breaking profile ≻. For any H and ≻, R(H) is a maximal
domain on which TTC≻ is CS. Further, any other domain on which TTC≻ is CS for any tie-breaking profile
≻ is a subset of some R(H).

Point 3 is the “essential uniqueness” of the core. Since indifferences are universal, it says that all core
assignments are rearrangements of copies of object types. Point 2 is implied by 3, but listed separately for
clarity. In summary, the TTC≻ always produces an allocation in the weak core, produces an allocation in
the core when it exists, and the core allocation is unique up to the identities of the commodified objects.

Proof. Appendix.

The intuition is to that for Pareto efficiency; note any allocation in the core is Pareto efficient. Under
general indifferences, the core may be multi-valued due to re-arranging objects that agents are indifferent
between. Under commodified goods, this is simply re-arranging copies of indistinguishable objects.

Our third result is that TTC≻ is group strategyproof in commodified objects. TTC≻ is not GSP in
general indifferences. Example 5 illustrates; an agent can break his own indifference to benefit a coalition
member without harming himself.

Example 5. Let R and R′ be given by the following, and let Q = {1, 3}.

R1 R2 R3 R′
1

w2, w3 w1 w1 w3

w1 w2 w2 w1, w2

w3 w3
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Let ≻i= (1, 2, 3) for all i. Then TTC≻(R) = (w2, w1, w3). But if 1 misreports R′
1, then TTC≻(R

′) =

(w3, w2, w1). Then 1 is indifferent, and 3 is strictly better off.

Commodified objects eliminates possibilities like the above in a subtle way. The model imposes “exoge-
nous” indifferences; agents can only report they are indifferent between all objects in the same indifference
class given by H.2

Proposition 3. TTC≻ is GSP in R(H) for any H and any tie-breaking profile ≻. For any H and ≻, R(H)

is a symmetric-maximal domain on which TTC≻ is GSP. Further, any other symmetric domain3 on which
TTC≻ is PE for any tie-breaking profile ≻ is a subset of some R(H).

Proof. Appendix.

The proof builds on moulin1995, relying on the restriction that agents can only report their indifference
class and not arbitrarily break ties within them. This rules out cases like Example 5. A profitably deviating
coalition would require a “first mover” misreport in order to obtain a welfare equivalent but distinct object
(see also the proof in bird1984; sandholtztai24), which commodified goods rules out. We also note that
R(H) is not a maximal domain on which TTC≻ is GSP with the following example.

Example 6. Consider H = {h1, h2} and H = {{h1, h2}}. Let R′ = R(H) ∪ (h1Ph2). That is, expand the
domain by including the ordering h1Ph2. It can be verified that TTC≻ is still group strategyproof.

If R1 = R2 = (1P1) or R1 = R2 = (1I2), then of course there is no possible group manipulation. Now
let h1 = w1 and h2 = w2, and 1 ≻i 2 for both i. Consider two possible (true) preference profiles:

R1 R2

h1 h1, h2

h2

or
R1 R2

h1, h2 h1

h2

In the first case, there is no improving allocation. In the second case, it would be advantageous for agent
1 to claim h2 and pass along h1, but this is not possible, since this preference is not in R′. Now let h1 = w2

and h2 = w1. In the first case, there is again no improving allocation (they trade in TTC≻). In the second
case, there is again no improving allocation. It can also be verified that no other tie breaking rule ≻ allows
an improving coalition.

The following theorem collects the results presented above.

Theorem 1. TTC≻ is PE, CS, and GSP for all tie-breaking profiles ≻ in any R(H). Each R(H) is a
maximal domain on which TTC≻ is PE and CS. Each R(H) is a symmetric-maximal domain on which
TTC≻ is GSP. Additionally, if the core of (N,w,R) for R ∈ R(H), it is unique up to the identity of the
objects.

The results and examples suggest a practical issue – selection of H given the set of objects H. In
some cases the commodification may be obvious; e.g., identical tasks or slots in a program. In other cases,
there may be some ambiguity; e.g., are two dorms of the same floor plan but on different floors equivalent?
Inappropriately combining two indifference classes can lead to efficiency losses in the spirit of Example 3.
On the other hand, splitting an indifference class can allow group manipulations like in Example 5. We leave
formal results on the tradeoff as future work.

2Constraining the reports is also an important difference from ehlers2002coalitional.
3That is, if the domain contains a preference where hPih

′, then h′Pih is also in the domain.
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4.1 Maximality for GSP

While commodified goods domains are not maximal for TTC≻ and GSP, we show that a closely related
domain is maximal. We will define a domain that is a generalization of commodified goods, but that we feel
has no intuitive use. Our intention is to argue informally that commodified goods domains are “essentially”
maximal for TTC≻ and GSP, in that the true maximal domain is not of modeling value.

Given a partition H = {H1, ...,HK}, let a function ∗ : H → H pick one house from each partition, e.g.
Hk := {h∗

k} ∪ Hk. That is, let every subset be partitioned again into a singleton and the remainder. Let
R̄1

i (≥i,H, ∗) be given by the following. (We will suppress the dependence on (≥i,H)). As before, let there be
a strict linear order ≥ over H. If h, h′ ̸∈ mini H, let the preference be as before: hR̄1

i h
′ ⇐⇒ η(h) ≥i η(h

′).
If h ̸∈ mini H, h′ ∈ mini H, then hP̄ 1

i h
′. Finally, let R̄1

i in mini H := Hk = {h∗
k} ∪ Hk be given by the

following:

h∗
kP̄

1
i hif h ∈ Hk

hĪ1i h
′if h, h′ ∈ Hk

That is, R̄1
i (≥i,H, ∗) is commodified goods until the last indifference class; in the last indifference class, h∗

k

is strictly preferred to the rest of the indifference class. The following example illustrates.

Example 7. Let H = {{a, b}, {c, d, e}}. Given H, rankings in R̄1
i (≥i,H, ∗) reflect both orderings ≥i, and

selection of h∗
k. Let ∗({a, b}) = a and ∗({c, d, e}) = c. Then

∪≥i,∗
{
R̄1

i (≥i,H, ∗)
}

a, b c, d, e

c a

d, e b

Similarly, define R̄2
i (≥i,H, ∗) in the same way, except in mini H := Hk = {h∗

k} ∪Hk let it be given by
the following:

hP̄ 2
i h

∗
kif h ∈ Hk

hĪ2i h
′if h, h′ ∈ Hk

That is, h∗
k is strictly dispreferred to the rest of the indifference class.

Now denote

R̄i(H, ∗, int) =

Ri(H) ∪
{
∪≥i

R̄1
i (≥i,H, ∗)

}
if int = 1

Ri(H) ∪
{
∪≥i

R̄2
i (≥i,H, ∗)

}
if int = 2

That is, start with commodified goods. Fix a choice of ∗, then append either an alternative ranking of the
first type or second type.

Example 8. Let H and ∗ be defined as in Example 7. Then R̄i(H, ∗, 1) contains the following rankings:

R̄i(H, ∗, 1)
a, b a, b c, d, e c, d, e

c c, d, e a, b a

d, e b
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We show that R̄N
i is a maximal domain for group strategyproofness.

Proposition 4. TTC≻ is GSP in R̄i(H)N for any H and any tie-breaking profile ≻. For any H and ≻,
R̄i(H)N is a maximal domain on which TTC≻ is GSP. Further, R̄i(H) describe all supersets of Ri(H) such
that TTC≻ is GSP on R̄i(H)N .

Proof. Appendix.

While we do not have formal results, we conjecture that R̄i(H)N is the only generalization of commodified
goods that is a maximal domain on which TTC≻ is GSP for all ≻. The proof shows that adding any strict
relation above the last indifference class or adding an indifference anywhere breaks GSP.

5 Conclusion

The house-swapping market is a classic model in economic theory with applications to important markets
like housing assignment, school choice, and organ exchange. Surprisingly, it took about thirty years from
shapley_cores_1974 to generalize results to indifferences. Since then, there has been a significant amount
of work dealing with indifferences.

TTC with fixed tie-breaking is a commonly used mechanism for house-swapping problems with indif-
ferences. Unfortunately, it does not preserve Pareto efficiency, group strategyproofness, or core selection in
general indifferences.

We have proposed a model of a particular kind of indifferences, “commodified objects”, where there are
indistinguishable copies of objects. Commodified objects captures many of the situations where house-
swapping is relevant. (Consider for example housing assignment with many indistinguishable dorm rooms.)
Therefore it is a compelling case to include in a model of house-swapping.

Fortunately, TTC with fixed tie-breaking preserves the aforementioned properties – Pareto efficiency,
group strategyproofness, and core selection – on commodified objects. Moreover, Pareto efficiency and core
selection fail on any larger domains. While group strategyproofness is preserved on some larger domains,
it fails on any “symmetrically larger” domain. Thus commodified objects is not only a compelling case to
include, but also the most general case preserving these properties.

We leave a characterization of TTC with fixed tie-breaking on commodified goods also remains an open
question.
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Appendix

The appendix contains the proofs of the results in the main text. Throughout, for a partition H, let
η : H → H associate an object h with its indifference class under R(H). Additionally, given a market and
TTC≻(R), denote Sk(R) as the kth cycle executed in TTC≻(R).4

It is immediate that TTC≻ is IR, as any agent pointing at his own endowment must be assigned to it.
We will use this fact for the some of the proofs.

Pareto efficiency

Proposition 1. TTC≻ is PE in R(H) for any H and any tie-breaking profile ≻. For any H and ≻, R(H)

is a maximal domain on which TTC≻ is PE. Further, any other domain on which TTC≻ is PE for any
tie-breaking profile ≻ is a subset of some R(H).

Proof. The result is trivial for |N | = 1. Now let |N | ≥ 2.
We show that PE is satisfied on commodified goods. Consider any (N,H,w). Let H be any partition

and let R ∈ R(H). If H = {H}, the result is trivial, so suppose it the partition has at least two subsets.
Let x = TTC≻(R), and suppose y ∈ X Pareto dominates x. Let W = {i : yiPixi} be the set of agents who
strictly improve under y, which must be nonempty. Let i ∈ W be the first agent in W assigned in TTC≻(R).

Denote i ∈ Sk(R) and η(yi) = Hy. We have that yiPixi. . Note that at step k, no objects in Hy were
available, otherwise i would have pointed to one of them rather than at xi.

Since yiPixi, we have xi /∈ Hy but yi ∈ Hy. Thus there must be another agent j such that xj ∈ Hy but
yj /∈ Hy. Since y Pareto dominates x, yjRjxj . Since yj and xj are not in the same indifference class, we
have yjPjxj . (This is where commodified objects is used.)

Then j ∈ W . Further, j must have been assigned before step k, since no object in Hy was available at
step k. This contradicts the presumption that i was the first agent in W assigned.

We now turn to the maximality and “uniqueness” claims. It suffices to show the uniqueness claim: that
TTC≻ fails PE on any domain R̃ that is not a subset of some R(H). If R̃ ̸⊆ R(H), then it must contain two
orderings R∗, R∗∗ such that for h1, h2 ∈ H we have h1I∗h2 but h1P∗∗h2. (Note that R∗, R∗∗ are preference
orderings, not preference profiles.)

Taking only R∗, R∗∗ for granted, we find R, w, and ≻ such that TTC≻(R) does not produce a Pareto
efficient allocation. Let wi = hi. Let R1 = R∗, so that h1I1h2. Let R2 = R∗∗, so that h1P2h2. Now
fori ̸∈ {1, 2}, let Ri be given by:

• if wiR∗∗w1, then Ri = R∗∗;

• otherwise Ri = R∗.

Let ≻ be such that i ≻i j for all i, j ∈ N .
This construction will allow us to ignore i ̸∈ {1, 2}. If wi ∈ {h : hR2w1}, then wiRiw1 by construction.

Likewise if wi ∈ {h : hR1w1} then wiRiw1; either Ri = R∗∗ or Ri = R1. Then if wiR1w1 or wiR2w1 for
i ̸∈ {1, 2}, we have wiPi,≻w1. Thus in TTC≻(R) := TTC(R≻), IR applied to i ̸∈ {1, 2} requires that w1R1x1

and w1R2x2.
4Note that Sk may not be unique, since multiple cycles may appear in step 2 of Algorithm 1.
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Then at some point, TTC≻(R) reaches a step where 1 and 2 are remaining (perhaps among others), but
any object either of them weakly prefers to w1 is already assigned. At this step, 1 points to himself, so
x1 = w1 and w1P2x2. This is Pareto dominated by x′

1 = w2, x
′
2 = w1, and x′

i = xi for the rest.

Core selecting

Proposition 2. Let x = TTC≻(R) and R ∈ R(H). For any ≻,

1. x is in the weak core.

2. if the core exists, then x is in the core. That is, TTC≻ is CS.

3. if y is in the core, then xiIiyi for all i ∈ N .

TTC≻ is CS in R(H) for any H and any tie-breaking profile ≻. For any H and ≻, R(H) is a maximal
domain on which TTC≻ is CS. Further, any other domain on which TTC≻ is CS for any tie-breaking profile
≻ is a subset of some R(H).

Proof. We first note a fact about x = TTC≻(R). If i ∈ Sℓ(R) and hPixi, then h was assigned in a cycle
before ℓ. This follows from the definitions; hPixi implies hPi,≻xi, and TTC≻(R) = TTC(R≻). Under
TTC(R≻), an object hPi,≻xi must have been assigned earlier than ℓ, otherwise i would have pointed to it.

(1.) Let R ∈ R(H) and denote x = TTC≻(R). Suppose there is a weakly blocking coalition N ′ ⊆ N

with allocation y such that yiPixi for all i ∈ N . We show by induction on the cycles of TTC≻(R) that N is
empty.

Step 1. All i ∈ S1(R) received one of their top-ranked objects, so they cannot be in N ′.

Step k. Suppose N ′ does not include any members of earlier cycles. Now consider i ∈ Sk(R). If yiPixi, then yi

must be an object assigned in ∪k−1
ℓ=1Sℓ(R). But no agents in ∪k−1

ℓ=1Sℓ(R) are in N ′, so it is not feasible
to include i in N ′ either. Thus no agents in Sk(R) are in N ′.

Then N ′ is empty, completing the proof of this claim.
(2.) 2 is implied by 3.
(3.) Suppose the core of (N,H,w,R) is nonempty and contains y. Denote x = TTC≻(R). We show

xiIiyi (∗) for all i by induction on the cycles.

Step 1. All i ∈ S1(R) received one of their top-ranked objects, so xiRiyi. Suppose (∗) is not true for S1(R).
Then there is some i ∈ S1(R) such that xiPiyi. But then S1(R) and x block against y, a contradiction.

Step k. Suppose that (∗) is true for all cycles before k. Suppose for some i ∈ Sk(R) we have yiPixi. Then yi

was assigned in a cycle before k. Further, yi and xi are in different indifference classes. Thus under y

if yi is assigned to i, an agent j in (∩k−1
ℓ=1Sℓ(R)) ∩Hyi

must be assigned an object outside of Hyi
. But

then it cannot be that yjIjxj , a contradiction.5 Thus we have that xiRiyi for all i ∈ Sk(R). Suppose
(∗) is not true for Sk(R). Then there is some i ∈ Sk(R) such that xiPiyi. But then Sk(R) and x block
against y, a contradiction.

5This is where commodified goods is used – this claim fails in general indifferences.
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Then xiIiyi for all i, as desired.
We now turn to the uniqueness claim: that TTC≻ fails CS on any domain R̃ that is not a subset of

some R(H). We use a similar construction as in the previous proof. If R̃ ̸⊆ R(H), then it must contain two
orderings R∗, R∗∗ such that for h1, h2 ∈ H we have h1I∗h2 but h1P∗∗h2. Without loss of generality, let h1 be
a best-ranked object according to R∗∗ such that this is true. That is, h1 ∈ maxR∗∗ {h : ∃h′ such that hI∗h

′}.
Let wi = hi. Let Ri be given by

• if wiR∗w1 and i ̸= 2, then Ri = R∗. Denote this set of agents as A; note that 1 ∈ A and 2 ̸∈ A.

• otherwise, Ri = R∗∗. Denote this set of agents as B.

Let each ≻i prioritize himself; that is, i ≻i j for all i, j ∈ N . We prove that TTC≻(R) = w.
Although TTC≻(R) does not set an order in which to execute cycles if multiple are present, we will

execute them in the following particular order without loss of generality. We proceed in descending order
of indifference classes of R∗. If there exists wi such that wiP∗w1, A surely points within themselves, since
their top-ranked objects must be held by members of A. By construction of ≻, holders of the top-ranked
objects point at themselves and receive their own endowments. This continues until only B∪{i ∈ A : w1Iwi}
remain. All remaining i ∈ A point at themselves and are assigned their endowments. Now all remaining
agents are in B so have the same preferences. This must lead to TTC≻(R) = w as desired.

However, w is blocked by x′ = (w2, w1, w3, ..., wN ). It remains to show that x′ is in the core. We prove
this by induction on indifference classes of R∗, then on R∗∗. Suppose there is a coalition Q and allocation
x′′ where all q ∈ Q receive x′′

qRqx
′
q. Note that x′

i = xi for all i ̸∈ {1, 2}.
Consider the best indifference class of R∗, denoted T 1 = argmaxH R∗. If w1 ̸∈ T∗, all i such that wi ∈ T 1

are in A, and x′
i = wi. In order to be included in a coalition Q, we require x′

iIixi. Only rearrangements
among T 1 are possible, and there are no strict improvements. Further, objects in T 1 are not available for
later tranches.

We repeat this argument until we reach the tranche where only B ∪ {i ∈ A : w1Iwi} remain. That
is, H\

{
∪k−1
t=1 T

t
}

remain. Denote the best remaining indifference class of R∗ among H\
{
∪k−1
t=1 T

t
}

as T k.
Consider i such that wi ∈ T k; note that these are the remainder of A and 2; denote this set Nk. Among
these, we have x′

1 = w2, x
′
2 = w1, and x′

i = wi for the remainder of i ∈ A. For the i ∈ A, x′
i are the best

available objects, so as before we require x′
iIixi. For agent 2, by construction w2 is the best object among

T k. Thus if any Nk are included in Q, only rearrangements among T k are possible, and there are no strict
improvements.

Now only agents in B remain. They all have the same preferences, so the proceeding steps are immediate.
Thus it is impossible for any Q to strictly improve without harming a member, and x′ is in the core.

Group strategyproofness

We now present the proof that TTC≻ is GSP in commodified objects. The proof follows moulin1995
(Lemma 3.3), which proves GSP for strict preferences. It is illustrative to see where the restriction on
commodified goods is used to preserve the logic.

Proposition 3. TTC≻ is GSP in R(H) for any H and any tie-breaking profile ≻. For any H and ≻,
R(H) is a symmetric-maximal domain on which TTC≻ is GSP. Further, any other symmetric domain on
which TTC≻ is PE for any tie-breaking profile ≻ is a subset of some R(H).
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Proof. Let R ∈ R(H), and denote x = TTC≻(R). Let St(R) be the cycles of TTC≻(R). Suppose Q ⊆ N

is a coalition reporting R′
Q ∈ R(H), and denote x′ = TTC≻(R

′
Q, R−Q). Suppose that x′

iRixi for all i ∈ Q.
The proof is by induction on the cycles of TTC≻(R) containing Q.

Let t∗ be the smallest index such that St∗(R) ∩Q is nonempty; that is, the first cycle where member(s)
of Q are assigned. By definition of TTC≻, for all j ∈ ∪t∗−1

ℓ=1 Sℓ(R), xj = x′
j . For i ∈ St1(R) ∩ Q, the best

possible objects are those in η(xi). Since x′
iRixi, under any misreport it must be that x′

i ∈ η(xi) for all
i ∈ St∗(R) ∩Q. (This is where commodified goods is applied. This step fails under general indifferences, as
i could report and obtain a welfare equivalent but distinct object.)

We argue that the same cycle as in St∗(R) must form under TTC≻(R
′). Note that in TTC≻(R), i ∈

St∗(R) ∩ Q reported η(xi) as the favorite remaining object and pointed at xi via the tie breaking rule ≻.
At step t∗ of TTC≻(R

′), if i pointed elsewhere than η(xi), he did not receive that object, so must not have
formed a cycle. In short, i will point uselessly until he points at η(xi). Meanwhile, j ∈ St∗(R) ∩Qc pointed
at their original xj and did not have formed a cycle. The owners of xj were also in St∗(R), so j cannot form
a cycle until at least one member of St∗(R) is assigned. Then i ∈ St∗(R)∩Q eventually point at η(xi). Since
none of St∗(R) ∩ Qc were assigned, xi is still available; i must point to it via ≻. Then St∗(R) still forms
(though not necessarily at step t∗).

Now consider the step t∗+1. The same objects are available for assignment to St∗+1(R) under TTC≻(R
′),

and we can repeat the same argument.
We now turn to the symmetric-maximality and uniqueness claims. As before, we show that that TTC≻

fails GSP on any symmetric domain R̃ that is not a subset of some R(H). If R̃ ̸⊆ R(H), then it must contain
two orderings R∗, R∗∗ such that for h1, h2 ∈ H we have h1I∗h2 but h1P∗∗h2. The symmetric requirement
also necessitates that it contains R∗∗∗ such that h2P∗∗∗h1. Taking only R∗, R∗∗, R∗∗∗ for granted, we find
R, w, and ≻ such that TTC≻ is not group strategyproof.

Let wi = hi for all i ∈ N . Let R1 = R∗ and R2 = R∗∗; that is w1I1w2 and w1P2w2. Let the rest of R be
given by:

1. Let wiR∗w1, then Ri = R∗. Let A = {i : Ri = R∗}; note this includes 1.

2. If w1P∗wi and wiR∗∗w1, then Ri = R∗∗. Let B = {i : Ri = R∗∗}; note this includes 2.

3. Otherwise, Ri = R∗∗∗.. Let C = {i : Ri = R∗∗∗}.

Let 1 ≻1 · · · and 1 ≻2, and for all other agents i ≻i. We show that TTC≻(R) = w. By the same argument
as in the proof of Proposition 2, the all i ∈ A receive xi = wi. Now consider the second group. A similar
argument again holds. Suppose j ∈ B. Since w1 belongs to A, if wiRjwj , then either i ∈ A or i ∈ B.
However, all wi = xi for i ∈ A. Then we again have wi = xi for i ∈ B. Then all remaining agents are in C,
so we have xi = wi as desired.

We have w1P2w2 but w1I1w2. Now suppose 1 instead reports R′
1 = R∗∗∗. Then A\{1} all receive wi = x′

i.
Since no i ∈ B\{2} strictly prefers w1Piwi, they receive again wi = x′

i. Then 2 is not assigned until all other
agents in B are assigned, at which point he points at 1.

Moreover, observe that for all j ∈ C and any i ̸= j such that wiPjwj , we have wiPiwj . This is because
A and B favor their own endowments to w1, and C favor h2 to h1. Consequently, xj = wj for allj ∈ C.
Therefore, 1 cannot be assigned underTTC≻(R

′) until after all agents in C form self-cycles, at which point
1 points at 2. Then x′

1 = w2, x
′
2 = w1, benefiting 2 without harming 1.
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We now turn to the results for GSP in the expanded domain R̄(H). First, we note that TTC is (Maskin)
monotone.

Let L(xi, Ri) = {h ∈ H : xiRih} be the lower contour set of Ri at xi. The definition is standard; a rule
f is monotone if when any set of agents move up their allocations in their rankings, the allocation remains
the same.

Monotonicity (MON). Let x = f(R). For all R ∈ R, if R′ ∈ R is such that for all i ∈ N we have
L(xi, Ri) ⊆ L(xi, R

′
i), then x = f(R′).

TTC is monotone in strict preferences; we will apply it here with respect to strict tie-broken preferences
R≻.

The following result is adapted from sandholtztai24, who show it for TTC with strict preferences. We
simply apply it here to TTC≻(R) ≡ TTC(R≻), noting that R≻ is always a profile of strict preferences.

Lemma 1 (sandholtztai24). Let R,R′ be profiles of any preferences. Let x = TTC(R≻) and x′ =

TTC(R′
≻). Suppose there is some i such that x′

iPi,≻xi. Then there exists some j such that wkP
′
j,≻xj

and xjPj,≻wk.

Proposition 4. TTC≻ is GSP in R̄i(H)N for any H and any tie-breaking profile ≻. For any H and ≻,
R̄i(H)N is a maximal domain on which TTC≻ is GSP. Further, R̄i(H) describe all supersets of Ri(H) such
that TTC≻ is GSP on R̄i(H)N .

Proof. Let R ∈ R̄(H), and denote x = TTC≻(R). Let St(R) be the cycles of TTC≻(R). Suppose Q ⊆ N is
a coalition where each q ∈ Q reports R′

q ∈ R̄(H), and denote x′ = TTC≻(R
′
Q, R−Q).

Let t∗ be the index of the first cycle in which a coalition member i ∈ Q is assigned to an object in
his last indifference class. We apply the same reasoning as the proof of Proposition 3 to argue that for all
j ∈

(
∪t∗−1
t=1 St(R)

)
∩Q we have x′

j = xj .
Now consider St∗(R). Only objects in η(xi) remain, since i would have pointed elsewhere if not. In the

following, we now focus attention only on remaining agents and rankings over remaining objects. Denote
η(xi) := {h∗} ∪H. Agents can either have the standard ranking over η(xi), denoted R∗ which is indifferent
over η(xi); or the alternative ranking R∗∗. The alternative ranking is either 1) h∗P∗∗h for all h ∈ H, which
we denote as h∗P∗∗H; or 2) HP∗∗h

∗. (Note that in either case, R∗∗ is indifferent over H.) We treat these
two cases separately.

Toward a contradiction, suppose there is some q ∈ Q such that x′
qPqxq. We show some other agent in Q

is strictly worse off.

1. Suppose the alternative ranking is h∗P∗∗H. The strict improver must have x′
q = h∗, xq ∈ H, and

h∗PqH.

Define a new preference profile R′′ as h∗P ′′
q H and h∗I ′′i H for i ̸= q. Let TTC(R′′

≻) = x′′.

For i ̸= q, we have L(x′
i, R

′
i,≻) ⊆ L(x′

i, R
′′
i,≻), since the only possible change was to add h∗. For q,

L(x′
q, R

′
q,≻) = L(x′

q, R
′′
q,≻), since x′

q = h∗ and all objects are weakly dispreferred to h∗ under any
preference. By monotonicity of TTC, x′′ = x′. In particular, x′′

q = h∗ and x′′
qPqxq.
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We can apply Lemma 1 to x′′ and x. There must exist some j ∈ Q and object h such that xjPj,≻h and
hP ′′

j,≻xj . But the only possible relative change in rankings involves h∗. So either h = h∗ or xj = h∗.

If h = h∗, then the relative ranking of h∗ moved up from Pj,≻ to P ′′
j,≻. It must be that h∗IjH and

h∗P ′′
j H. By construction of R′′, this implies j = q, but this contradicts h∗PqH.

Then it must be xj = h∗. Likewise, the relative ranking of h∗ moved down from Pj,≻ to P ′′
j,≻, so it

must be that h∗PjH and h∗I ′′j H. But then xjPjx
′
j as desired.

2. Suppose the alternative ranking is HP∗∗h
∗. Then the strict improver must have x′

q ∈ H,xq = h∗, and
HPqh

∗.

Let ℓ be the agent such that x′
ℓ = h∗. Since xq = h∗, xℓ ∈ H. Define a new preference profile R′′ as

h∗I ′′ℓ H and HP ′′
i h

∗ for i ̸= ℓ. Let TTC(R′′
≻) = x′′.

For i ̸= ℓ we have L(x′
i, R

′
i,≻) ⊆ L(x′

i, R
′′
i,≻), since the only possible change was to add h∗ to the lower

contour set. For ℓ, L(x′
ℓ, R

′
ℓ,≻) = L(x′

ℓ, R
′′
ℓ,≻), since h∗I ′′ℓ H. By monotonicity of TTC, x′′ = x′. In

particular, x′′
q ∈ H and x′′

qPqxq.

As before, we apply Lemma 1 to x′′ and x. There must exist some j ∈ Q and object h such that
xjPj,≻h and hP ′′

j,≻xj . Either h = h∗ or xj = h∗.

If xj = h∗, then j = q is the strict improver. (Note there can only be one strict improver since h∗ is
unique.) But HPqh

∗ and since q ̸= ℓ, HP ′′
q h

∗, but this contradicts the requirement that xjPj,≻h and
hP ′′

j,≻xj .

Then it must be h = h∗. We require h∗P ′′
j,≻xj . But HP ′′

i h
∗ for i ̸= ℓ, so it must be j = ℓ. Since we

have h∗I ′′ℓ H and h∗P ′′
ℓ,≻xℓ but xℓPℓ,≻h, we must have HPℓh

∗. Since xℓ′ = h∗, this gives us xℓPℓx
′
ℓ, as

desired.

We now prove the maximality and uniqueness claims. Let R̃i ⊋ R̄i and denote R̃ = R̃N
i . We will show

there exists a w, R ∈ R̃, and ≻ such that TTC≻(R) is not GSP. At least one of the following must be true:

I There is R∗ ∈ R̃i but R∗ ̸∈ R̄i(H) for any H.

II There are R∗, R∗∗ ∈ R̃i but there is no H such that R∗, R∗∗ ∈ R̄i(H). That is, perhaps both R∗ and
R∗∗ are from commodified goods-plus domains, but they cannot be from the same one.

Suppose case I is true. There must be some Ri, Rj ∈ R̃i such that at least one of the following occurs:

1. there exist a, b ∈ H such that η(a) ̸= η(b) but aIib. That is, an extra indifference is present.

2. there exist a, b, c ∈ H such that η(a) = η(b) ̸= η(c) but aPib and aPic. That is, an indifference outside
of the last indifference class is broken (in any way).

3. there exist a, b, c, d ∈ H such that a, b, c, d ∈ η(a) but aIibPicIid. That is, if the last indifference class
is broken into two tiers, there are at least two objects in each “tier”.

4. there exist a, b, c ∈ H such that a, b, c ∈ η(a) but aPibPic. That is, if the last indifference class is
broken, there are at least three tiers.

5. there exist a, b such that a, b ∈ η(a) but aPib and bPja. That is, if the last indifference class is broken
into two tiers, both strict preferences are present.
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Suppose the first case. Consider two agents, 1 and 2. Let all i ̸= 1, 2 top-rank η(wi) and have i ≻i · · · , so
that they retain own endowment. Let R1 be the new preference. Let a = w1 and b = w2, so that w1I1w2.
Let R2 be such that 2 top-ranks η(w1). Let 1 ≻1 2 ≻1 · · · . Finally, Then 1 and 2 do not trade. If 1
instead submits w2P

′
1w1, then x′

1 = w2, x
′
2 = w1. This is a strict improvement for 2 without harming 1; thus

Q = {1, 2} forms a coalition.
Suppose the second case. Consider three agents, 1, 2, and 3. Again, let all i ̸= 1, 2, 3 top-rank η(wi) and

have i ≻i · · · , so that they retain own endowment. Let w1, w2, w3 be such that the new preference allows
η(w1) = η(w2) but allows w1Piw2. Let 1 and 2 top-rank η(w3). Let 3 top-rank η(w1), and 2 ≻3 1 ≻3 3 ≻3 · · · .
Then 3 and 2 trade, and 1 keeps his own endowment. However, if 3 instead submits the new preference,
w1P

′
3w2 and w1P

′
3w3, then 3 and 1 trade instead. This benefits Q = {1, 3}.

Suppose the third case. Consider four agents, 1, 2, 3, and 4. Again, let all i ̸= 1, 2, 3, 4 top-rank η(wi) and
have i ≻i · · · , so that they retain own endowment. Let w1, w2, w3, w4 be such that under the new preference,
w1Iiw2Piw3Iiw4, and let R3, R4 have this preference. Let R1, R2 top-rank η(w1). Let ≻ be as follows:

≻1 ≻2 ≻3 ≻4

2 3 1 1

4 2
...

...
...

...

Then x1 = w2, x2 = w3, x3 = w1, x4 = w4. Now let 2 also submit w1I
′
2w2I

′
2w3I

′
2w4. Then x′

1 = w4, x
′
2 =

w2, x
′
4 = w1. This strictly benefits 4 without harming 2, so Q = {2, 4} is a profitable coalition.

Suppose the fourth case. Consider three agents, 1, 2, and 3. Again, let all i ̸= 1, 2, 3 top-rank η(wi)

and have i ≻i · · · , so that they retain own endowment. Let w1, w2, w3 be such that w1, w2, w3 ∈ η(w1) but
the new preference is w1Piw2Piw3. Let R1, R2 be indifferent between these objects, and let R3 be the new
preference. Let ≻ be as follows:

≻1 ≻2 ≻3

2 1
...

1 3
3 2
...

...

Then x1 = w2, w2 = x1, w3 = w3. Now let 1 submit the new preference, w1P
′
1w2P

′
1w3. Then x′

1 =

w1, x
′
2 = w3, x

′
3 = w2, strictly benefiting 3 without harming 1, so Q = {1, 3} is a profitable coalition.

Finally, suppose the fifth case. This is the symmetric-maximality case. Consider two agents, 1 and 2. Let
w1 and w2 be the relevant objects. Let R1 ∈ R(H), so w1I1w2; and w1P2w2. Again, let all i ̸= 1, 2 top-rank
η(wi) and have i ≻i · · · , so that they retain own endowment. Then x1 = w1, x2 = w2. However, if 1 instead
submits w2P

′
1w1, then x′

1 = w2 and x′
2 = w1. This strictly benefits 2 without harming 1, so Q = {1, 2} is a

profitable coalition.
Now suppose case II is true, but not case I. Then there are R∗, R∗∗ ∈ R̃i which are not compatible with

the same R̄i(H).
If R∗ ∈ R̄i(H) and R∗∗ ∈ R̄i(H′) for some H ̸= H′, then there must be some h, h′ ∈ H such that hI∗h

′

but hP∗∗h
′, or vice versa. Then we can apply cases I.1 or I.2 from above.
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Now suppose R∗ ∈ R̄i(H, ∗, int) and R∗∗ ∈ R̄i(H, ∗′, int′). That is, they are different commodified goods-
plus domains on the same partition. It must be that R∗ and R∗∗ bottom-rank the same partition element
of H (denoted Hk), else they are compatible in the same R̄i(H). Further, it must be that R∗ and R∗∗ are
differing “alternative” rankings over Hk. Therefore there must be h1, h2 ∈ Hk such that h1P∗h2 but h1P∗∗h2.

Let wi = hi for all i; let R2 = R∗; and let Ri top-rank η(wi) for all i ̸= 2. Finally, let i ≻i · · · for
all i. Then TTC≻(R) = w. However, if 1 instead reports R′

1 = R∗∗, then x′
1 = h2 and x′

2 = h1, a strict
improvement for 2 without harming 1.
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