
New descriptions of serial dictatorship for object allocation with

indifferences

Will Sandholtz∗ Andrew Tai†

October 2024

Abstract

Serial dictatorship (SD) is often used to allocate indivisible objects to participants. However, when
participants may be indifferent between objects, the usual implementation is not Pareto efficient. We
note the correct implementation of SD, which acts on social outcomes (allocations). We also note two
other descriptions of the same mechanism, which do not require participants to choose between social
outcomes.

1 Introduction

We consider allocating indivisible objects to agents where preferences may contain indifferences. In the clas-
sically laid out serial dictatorship, the first priority agent selects his most preferred object, with indifferences
broken arbitrarily. The next agent selects his most preferred object among those remaining, indifferences
again broken arbitrarily. We term this “naive serial dictatorship” (NSD). However, this mechanism is not
Pareto efficient, as will be shown in the next section.

In practice, NSD is used in important settings where indifferences are plausible. For example, US Naval
Academy graduating midshipmen select their first ship assignments this way.1 A midshipman may plausibly
be indifferent between two ships of the same class, or two different ships based in the same location. Other
plausible examples are NYC Specialized High Schools matching and college dorm assignments.

In this note, we present the “correct” implementation of serial dictatorship for this setting. While this
mechanism is known, to our best knowledge it has not been well recorded. The mechanism solicits each
agent’s preferences over the objects. However, instead of straight forwardly allocating one of the favorite
remaining objects to the nth agent, the mechanism preserves all allocations in which n matches to one of
his favorite remaining objects. Equivalently, it vetoes any allocation in which he does not receive one of
these objects. That is, n is guaranteed to match with one of his favorite remaining objects, though the exact
one may not determined until later. We refer to this as “true serial dictatorship” (TSD) for convenience to
distinguish it from NSD.

While this description of TSD is straight-forward for those with some training in social choice, it can be
difficult to describe to participants and market stakeholders. Thus we give two other descriptions of TSD. The
first has the market implementer check compatible allocations to allow participants to select sets of objects.

∗UC Berkeley, willsandholtz@berkeley.edu
†Defense Resources Management Institute, US DoD, andrew.tai@nps.edu
1For a video of the process, see here: https://www.youtube.com/watch?v=1nvrzluVIeQ

1

https://www.youtube.com/watch?v=1nvrzluVIeQ

The second description deals almost almost entirely with objects themselves rather than allocations. These
descriptions can be useful when the market stakeholders are not familiar with social choice.

TSD preserves strategyproofness and Pareto efficiency. However, neither TSD nor NSD are group strat-
egyproof. Pápai (2003) shows that with strict preferences, group strategyproofness is equivalent to non-
bossiness and strategyproofness. However, this is not true on the full domain of preferences. Indeed, Ehlers
(2002) shows that Pareto efficiency and group strategyproofness are incompatible when agents have indif-
ferences. Thus we recover as much as possible the desirable characteristics of serial dictatorship from strict
preferences. Of course, in the full domain of preferences, the house allocation problem is bound to the Arrow
(2012) Impossibility Theorem. No rule can satisfy non-dictatorship, Pareto efficiency, and independence of
irrelevant alternatives.

Table 1: Comparison of mechanisms

Naive SD True SD
Pareto efficient No Yes
Strategyproof Yes Yes

Group strategyproof No No

In the next section, we formally define the model. In Section 3, we describe NSD and TSD. In Section 4,
we prove the desired properties of TSD and illustrate why it is not group strategyproof.

2 Model

We briefly describe the model, which is standard. Let the set of agents be N = {1, ..., n} and indivisible
objects be H = {1, ..., h}. We do not impose any relation between |N | and |H|. Each i ∈ N has a preference
relation Ri over H ∪{∅} which may include indifferences, where ∅ represents being unmatched. If |N | ≤ |H|,
∅ may be omitted in the absence of an outside option. We denote Ii the indifference relation from Ri, and
Pi the strict relation. A preference profile is R = (Ri)i∈N . For convenience, for Ri we denote R−i to be the
preference profile of other agents N \ {i}. For C ⊆ N , RC is the profile of Ri such that i ∈ C; likewise, R−C

is the profile of N \ C.
An allocation is a vector x = (x1, ..., xn) where each h ∈ H corresponds to at most one xi. That is, each

object is assigned to at most one agent. Let X be the set of all feasible allocations. An allocation rule f

is a function that assigns any preference profile R to an allocation, denoted f(R) = x. The desiderata are
as follows.

Definition 1. An allocation rule f is Pareto efficient if for any R, f(R) is Pareto efficient according to
R. That is, f only selects allocations that are Pareto efficient.

Definition 2. An allocation rule f is strategyproof if for all i ∈ N , for any Ri, R
′
i, R−i, we have

fi(Ri, R−i)Rifi(R
′
i, R−i). Informally, if i changes his report to R′

i, he is weakly worse off.

Definition 3. An allocation rule f is group strategyproof if for all C ⊆ N and for any RC , R
′
C , R−C ,

there is some i ∈ N ′ such that fi(RN , R−N)Pifi(R
′
N , R−N). Informally, for any coalition misreport, at least

one member of the coalition is strictly worse off.

2

3 Allocation rules

We now specify the two allocation rules and demonstrate their properties. Let ≻ be some exogenously chosen
priority order.

Algorithm 1. Naive serial dictatorship (NSD). Inputs: (N,H,R,≻). Let N be indexed by
their priority order; that is, i = 1 is the highest priority agent.

Step 1. Consider agent 1’s favorite objects. Assign one of agent 1’s favorite objects to him, and
denote it x1. (If there are multiple, the object can be chosen arbitrarily.) Let H1 = H \{x1}.

Step k. Consider agent k’s favorite objects from Hk−1. Assign one of agent k’s favorite objects to
him. (If there are multiple, the object can be chosen arbitrarily.) Let Hk = Hk−1\{xk}.

The dynamic form of NSD is likely familiar to the reader: in order of priority, each agent chooses one
desired object. It is immediate that NSD is strategyproof. However, as the following example shows, it is
not Pareto efficient nor group strategyproof.

Example 1. Let preferences be as follows, and suppose indifferences are resolved by choosing the lowest
indexed object.

R1 R2 R3

1, 2, 3 1 2
2 1
3 3

The allocation is NSD(R) = (1, 2, 3). However, it is clear that x′ = (3, 1, 2) is feasible and Pareto efficient.
It is also achievable by a misreport 3R′

12R
′
11, showing NSD is not group strategyproof.

The loss of efficiency (as opposed to the case of strict preferences) is disturbing. NSD is a mis-
implementation of the true serial dictatorship mechanism, which asks participants to chose social outcomes
(in this case, allocations), with succeeding agents breaking ties. We first note that Ri creates induced
preferences Ra

i over allocations X, where

xRa
i x

′ ⇐⇒ xiRix
′
i

We now present true serial dictatorship, which preserves this efficiency.

Algorithm 2. True serial dictatorship (TSD). Inputs: (N,H,R,≻). Let N be indexed by
their priority order; that is, i = 1 is the highest priority agent.

Step 1. Let X1 = {x ∈ X : xRa
i y ∀y ∈ X}. That is, X1 contains all of 1’s favorite allocations.

Step k. Let Xk = {x ∈ Xk−1 : xRa
ky ∀y ∈ Xk−1}. That is, Xk contains all of k’s favorite allocations

remaining from the previous step.

Step n+ 1. Choose any allocation in Xn to implement.

This is the classic “true” implementation of serial dictatorship over social outcomes. A social outcome is an
allocation, and agent 1 is implicitly indifferent between all outcomes that give him one of his favorite objects.
Agent 1 chooses to preserve his favorite allocations; agent 2 preserves his favorite among the remainder, and
so on.

3

However, this can be difficult to describe for a layperson, since the algorithm acts on allocations. The
dynamic form is also unwieldy in practice as the list of allocations can be very long. We present two
other implementations of the same mechanism that allows participants to select sets of objects, rather
than allocations. The first presents feasible objects via the set of remaining allocations; the second avoids
describing allocations at all until the end.

Algorithm 3. True serial dictatorship (TSD). Inputs: (N,H,R,≻). Let N be indexed by
their priority order; that is, i = 1 is the highest priority agent.

Step 1. Consider the set of agent 1’s favorite objects from H ∪ {∅}, denoted F1. Let X1 =

{x ∈ X : x1 ∈ F1}.

Step k. Let Hk = {h ∈ H ∪ {∅} : xk = h for some x ∈ Xk−1}. Consider the set of agent k’s favorite
objects from Hk, denoted Fk. Let Xk = {x ∈ Xk−1 : xk ∈ Fk}.

Step n+ 1. Choose any allocation in Xn to implement.
Algorithm 3 deals with allocations but presents participants with lists of available objects. At each step

t, we check the remaining allocations for objects which can be assigned to agent t. He can select any subset
of these and be guaranteed one of them. Participants would only ever select desired objects. Informally, we
find it much simpler to explain Algorithm 3 to participants. However, it still requires the market designer
to deal with allocations. The next algorithm avoids dealing with allocations until the end, in case one needs
to be selected arbitrarily.

Algorithm 4. True serial dictatorship (TSD). Inputs: (N,H,R,≻). Let N be indexed by
their priority order; that is, i = 1 is the highest priority agent.

Step 1. Consider the set of agent 1’s favorite objects from H ∪ {∅}, denoted F1. If ∅ ∈ |F1|, replace
it with a new object labeled ∅1.

• If |F1| = 1, then assign x1 as this object. Set H1 = H \ {x1}. If H1 = ∅, end the
algorithm and assign the remaining agents to ∅.

• Otherwise, let H1 = H.

Step k. Consider the set of agent k’s favorite objects among Hk−1 ∪ {∅}, denoted Fk. If ∅ ∈ |Fk|,
replace it with a new object labeled ∅k.

• Let K = {1, ..., k}. For any K ′ ⊆ K, if | (∪t∈K′Ft) | = |K ′|, then agents in K ′

must be assigned to objects in their respective Ft, if they were not already.a Then let
Hk = Hk−1 \ {xt : t ∈ K ′}. If Hk = ∅, end the algorithm and assign agents k+ 1, ..., n

to ∅.

• Otherwise, let Hk = Hk−1.

Step n+ 1. If there are agents who are not yet assigned, choose any allocation compatible with their
respective Ft.

aThis can be found using an algorithm for a maximum bipartite matching algorithm, e.g. Hopcroft–Karp–
Karzanov algorithm in O(k2) time.

This description of serial dictatorship allows participants to claim a set of remaining objects and be guar-
anteed one of them. As it progresses, it removes sets of objects once they must be assigned. This occurs for

4

K ′ ⊆ K if | (∪t∈K′Ft) | = |K ′|, since the number of objects that must be assigned is the same as the number
of objects claimed. While it is not explicitly noted in the algorithm, already assigned t can be removed from
consideration. Additionally, at step k, only new subsets including k need to be checked, since other subsets
were already checked in preceding steps. The following example illustrates Algorithm 4.

Example 2. Let preferences be as follows.

R1 R2 R3 R4 R5 R6

1, 2 1, 2 1 1 1 1
3, 4, 5, 6 3, 4, 5, 6 2 3 2 2

∅ ∅ 3, 4, 5 4 3, 5 3, 4, 5
6 4,5,6 4 ∅, 6
∅ ∅ 6

Step 1. Agent 1 chooses among H ∪ {∅} and submits F1 = {1, 2}. Since |F1| > 1, we proceed with H1 = H =

{1, 2, 3, 4, 5}.

Step 2. Agent 2 chooses among H1 ∪ {∅} and submits F2 = {1, 2}. Now |F1 ∪ F2| = 2, so we assign agents 1
and 2 to objects in their claims. Let x1 = 1, x2 = 2.2 Now H2 = H1 \ {1, 2} = {3, 4, 5}.

Step 3. Agent 3 chooses among H2∪{∅} and submits F3 = {3, 4, 5}. |F3| = 3 ̸= 1, so proceed with H3 = H2 =

{3, 4, 5}.

Step 4. Agent 4 chooses among H3 ∪ {∅} and submits F4 = {4}. |F3 ∪ F4| = 3 ̸= 2, so proceed with H4 =

H3 = {3, 4, 5}.

Step 5. Agent 5 chooses among H4 ∪ {∅} and submits F5 = {3, 5}. |F3 ∪ F4 ∪ F5| = 3. Then we must assign
agents 3, 4, and 5. Let x3 = 3, x4 = 4, x5 = 5. Now H5 = {6}.

Step 6. Agent 6 chooses among H5∪{∅} and submits F6 = {∅, 6}. We replace it with F6 = {∅6, 6}. |F6| = 2 ̸= 1,
so we proceed.

Step 7. We choose any compatible allocation for agent 6. We can either assign x6 = ∅ or x6 = 6.

The final allocation is TSD(R) = (1, 2, 3, 4, 5, 6). It can be verified that this is a Pareto efficient allocation.
However, it is immediate that NSD(R) may be an inefficient allocation. Depending on the tie-breaking rule,
agent 3 may be assigned object 4, guaranteeing an inefficient allocation.

We have presented NSD and three descriptions of TSD. It is immediate that Algorithms 2 and 3 are the
same, holding fixed the selection in step n + 1. To see that Algorithms 3 and 4 are the same, note that
Algorithm 3 presents agent k with objects that are compatible with remaining allocations. Algorithm 4
does this analogously by removing objects when they are no longer available to later participants. All three
versions have immediate dynamic implementations, where participants are called upon to play sequentially.

2x1 = 2, x1 = 1 also works.

5

4 Properties of TSD

We now demonstrate the desirable properties of TSD.

Proposition 1. True serial dictatorship is Pareto efficient and strategyproof.

Proof. Fix a market (N,H,R,≻) and let x = TSD(R).

1. Pareto efficient. We prove this using the description of Algorithm 2. Suppose there is an allocation
y that Pareto dominates x. Consider the highest priority agent i such that yP a

i x. This allocation must
not have been remaining in Xi−1, otherwise i would have selected it. Thus a higher priority agent k

must have removed it, so xP a
k y, a contradiction.

2. Strategyproof. We prove this using the description of Algorithm 3. Suppose agent i submits R′
i ̸= Ri.

Denote TSD(Ri) = x, TSD(R′
i, R−i) = x′. The only change that might affect the allocation is the

indifference class reported when i is called upon to play.3 Denote these ICi and IC ′
i. Note that since

R−i = R′
−i, i faces the same choice. Suppose IC ′

i \ ICi ̸= ∅. Then h ∈ IC ′
i \ ICi must be strictly

dispreferred (otherwise it was not available or was already in ICi). Then x′
i ∈ ICi or x′

i ∈ IC ′
i \ ICi,

neither of which is a strict improvement. If IC ′
i ⊊ ICi, then i is still guaranteed to receive one of these

objects, so x′
iIixi.

We also note that TSD is not group strategyproof with the following example.

Example 3. Let R be the following.

R1 R2 R3

1,2 2 1
3 3 2

1 3

Note that TSD(R) = (1, 2, 3). Let R′
1 = 2R11R13. Then TSD(R′

1, R2, R3) = (2, 3, 1). So a group
misreport (R′

1, R3) leaves 1 indifferent and 3 strictly better off.

The proof of Proposition 1 illustrates an asymmetry for participants’ incentives. While over-reporting
acceptable goods is (weakly harmful), it is costless to i to report a subset of his own indifference class.
Thus if reporting larger indifference classes requires greater cognitive cost, participants may be tempted to
under-report. Informally, a solution to this problem can be to offer payments for larger indifference classes,
where payments are of an order of magnitude smaller than benefits of the allocation. In the case of USNA
midshipmen, offering, say, $50 per extra item reported may be enough to induce proper reporting without
altering the strategic properties of TSD.

References

Arrow, K.A. 2012. “Social Choice and Individual Values.” Yale University Press. New Haven, CT.

Ehlers, L. 2002. “Coalitional Strategy-Proof House Allocation.” Journal of Economic Theory 105, 298-317.

Pápai, S. 2003.“Strategyproof Assignment by Hierarchical Exchange.” Econometrica, 68 (6), 1403-1433.
3For clarity, we phrase the procedure as a dynamic implementation, though the idea is the same under either the static or

dynamic implementation.

6

	Introduction
	Model
	Allocation rules
	Properties of TSD

