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Abstract

We study the classic house-swapping problem of Shapley and Scarf (1974) in a setting where

agents may have “objective” indifferences, i.e., indifferences that are shared by all agents. In

other words, if any one agent is indifferent between two houses, then all agents are indifferent

between those two houses. The most direct interpretation is the presence of multiple copies

of the same object. Our setting is a special case of the house-swapping problem with general

indifferences. We derive a simple, easily interpretable algorithm that produces the unique strict

core allocation of the house-swapping market, if it exists. Our algorithm runs in O(n2) time,

where n is the number of agents and houses. This is a substantial improvement over the O(n3)

time methods for the more general problem.

1 Introduction

The house-swapping problem originally studied by Shapley and Scarf (1974) assumes that agents

have a strict preference ordering over the set of the agents’ houses. Implicitly, all houses are distinct.

As Roth and Postlewaite (1977) show, in this setting the strict core is always non-empty and consists

of a single allocation, which can identified using the Top Trading Cycles algorithm (TTC).

In the more general setting where agents’ preference rankings may contain indifferences, the

strict core may be empty. Moreover, when the strict core is non-empty, it may contain multiple

allocations. Quint and Wako (2004) devised an algorithm, Top Trading Segmentation (TTS), that

finds a strict core allocation, when it exists. Alcalde-Unzu and Molis (2011) devise Top Trading

Absorbing Sets (TTAS) which finds the strict core when it exists and the weak core otherwise. They

leave computational complexity of their algorithm as an open question. Jaramillo and Manjunath

(2012) also solve the general indifference problem with Top Cycle Rules (TCR), which has complex-

ity O(n6). Aziz and Keijzer (2012) present Generalized Absorbing Top Trading Cycle (GATTC),

generalizing TTAS and TCR and show that TTAS has exponential time complexity. Plaxton (2013)

develops a different mechanism to produce a strict core allocation with time complexity O(n3).
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We study a more structured problem, where any indifferences are shared across all agents. We

use the phrase “objective indifferences” to describe this setting. Conversely, we use the phrase

“subjective indifferences” to describe indifferences that are not necessarily shared by all agents.

Objective indifferences are the leading case of indifferences, since many objects we encounter in

daily life are commodified. This additional structure enables us to develop a simple algorithm to

find the strict core, when it exists, with time complexity O(n2).

Our setting can be thought of as an intermediate case between the original Shapley and Scarf

setting and the general setting studied first by Quint and Wako. With objective indifferences, as in

the house-swapping problem with subjective indifferences, the strict core may be empty. However,

when the strict core is non-empty it contains a unique allocation. We propose a simple algorithm

that finds the strict core allocation of a house-swapping market with objective indifferences in

square-polynomial time. This algorithm is faster than the polynomial time algorithms that are

needed for house-swapping markets with subjective indifferences.

2 Model

Let I = {1, 2, ..., I} be a set of agents, each of whom is endowed with a house. Let H = {1, 2, ...,H}
be the set of possible house types in the market. Note that H < I implies that some agents were

endowed with houses of the same type. The endowment function E : I → H maps each agent to

the house type he was endowed with.

Each agent i ∈ I has strict preferences ≿i over H. Implicitly, all agents are indifferent between

two houses of the same type. We use ≿= {≿1,≿2, ...,≿I} to denote the preference profile of all

agents.

An allocation µ is a function µ : I → H such that |µ−1(h)| = |E−1(h)| for all h ∈ H. That is,

µ(i) = h means agent i is assigned a house of type h, and the number of agents who are allocated

to a house type is equal to the supply of it.

The house-swapping market is summarized as the tuple (I,H,E,≿). We are interested in

whether the strict core exists.

Definition 1. An (sub-)allocation µ is feasible for a coalition of agents I ′ ⊆ I if
∣∣µ−1(h)

∣∣ =∣∣E−1(h) ∩ I ′
∣∣ for any h ∈ E(I ′). That is, the quantity of each house type required in the (sub-

)allocation is the same as the quantity in the coalition’s endowment.

Definition 2. A (feasible) allocation µ is in the strict core of the house-swapping market

(I,H,E,≿) if there is no coalition I ′ ⊆ I and no sub-allocation µ′ such that:

1. µ′ is feasible for I ′

2. µ′(i) ≿i µ(i) for all i ∈ I ′
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3. µ′(i) ≻i µ(i) for at least one i ∈ I ′

We derive an algorithm that finds the strict core of a house-swapping market (I,H,E,≿) when

it exists.

3 Directed Graphs

Before proceeding to our main results and the algorithm, we review some useful concepts related

to directed graphs. The definitions are standard, and a familiar reader may skim this section.

A directed graph is given by D(V,E) where V is the set of vertices and E is the set of arcs.

An arc is a sequence of two vertices (v, v′). We allow for arcs of the form (v, v), which we call

self-loops. A (v1, vk)-path is a sequence of vertices (v1, v2, ..., vk) where each vi is distinct and

(vi−1, vi) ∈ E for all i = 2, 3, ..., k. A cycle is a path where v1 = vk is the only repeated vertex. A

sink of a directed graph is a vertex v such that (v, v′) /∈ E for all v′ ∈ V .

A strongly connected component (SCC) of a directed graph D(V,E) is a maximal set

of vertices S ⊆ V such that for all distinct vertices v, v′ ∈ S, there is both a (v, v′)-path and a

(v′, v)-path. By convention, there is always a path from v to itself, regardless of whether (v, v) ∈ E.

The collection of strongly connected components of a directed graph forms a partition of V . (To

see this, note that the definition of an SCC implies that a vertex can be in exactly one SCC.)

The condensation of a directed graph D(V,E) is the directed graph D(V SCC , ESCC) where

V SCC is the set of SCCs of D(V,E) and (S, S′) ∈ ESCC if and only if there exist v ∈ S and v′ ∈ S′

such that (v, v′) ∈ E. In other words, it is the arc-contraction of D on each SCC – replace each

SCC with a single vertex, and keep any arcs between SCCs. Condensations of directed graphs are

always acyclic.

A topological ordering of a directed acyclic graph D(V,E) is a total order ≤ of the elements

of V such that if (v, v′) ∈ E, then v ≤ v′. A directed graph has a topological ordering if and only

if it is acyclic.1 It is immediate that the vertex with the highest topological ordering is a sink.

4 Results

In this section, we give our algorithm to determine whether a strict core of a market (I,H,E,≿)

exists and to find it when it does. First, we define a function Bi that denotes the i’s most preferred

house type among a subset of house types. Let Bi : I × P(H) → H be given by Bi(H
′) = h if

h ≿i h
′ for all h′ ∈ H ′.

We now give our algorithm.

Algorithm 1. House Top Trading Segments (HTTS)

1See Korte and Vygen (2008), Section 2.2.
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Step 1. Let R1 = H. Construct the directed graph D1 = D(R1, E1) where (h, h′) ∈ E1 if Bi(R1) =

h′ for some i ∈ E−1(h). That is, draw an arc (h, h′) exists if an owner of h top-ranks h′

among all house types R1 = H. Find an SCC H1 of D1 with no outgoing arcs; i.e., for any

h ∈ H1 and h′ /∈ H1, (h, h
′) /∈ E1.

2 We call H1 a “house top trading segment”.

1. Let I1 = E−1(H1). For all i ∈ I1, set µ(i) = Bi(R1). That is, assign every agent

endowed with a house in H1 to his favorite house (also in H1).

2. Check that µ is feasible for I1. If so, proceed to part c. Otherwise, stop.

3. Let R2 = R1 \H1. If R2 = ∅, stop; otherwise, proceed to Step 2.

Step d. Construct the directed graph Dd = D(Rd, Ed) where (h, h′) ∈ Ed if Bi(Rd) = h′ for some

i ∈ E−1(h). Find an SCC Hd of Dd with no outgoing arcs.

1. Let Id = E−1(Hd). For all i ∈ Id, set µ(i) = Bi(Rd). That is, assign each agent in Id to

his favorite remaining house. Since Hd has no outgoing arcs, this house is also in Hd.

2. Check that µ is feasible for Id. If so, proceed to part c. Otherwise, stop.

3. Let Rd+1 = Rd \Hd. If Rd+1 = ∅, stop; otherwise, proceed to Step d+ 1.

Remark 1. Note that at each step, house types are removed, and thus agents owning them are also

removed. Since there are finitely many house types H, the algorithm terminates in finite time.

Remark 2. At part b of each step, µ is feasible for Id if and only if for each h ∈ Hd,
∣∣E−1(h) ∩ Id

∣∣ =
|{i : BiHd) = h, i ∈ Id}|. That is, the number of copies of h available in Id is equal to the number

of agents who top-rank h among the remaining houses. Informally, “supply equals demand.”

The house top trading segments we find in each step are analogous to TTC trading cycles. At

each step, agents “point” from their owned house to their favorite house. We then find the trading

segment and execute the trades, if possible (“feasible”). For readers familiar with Quint and Wako

(2004), these are modified versions of top trading segments.

Theorem 1. Let (I,H,E,≿) be a market.

1. The strict core exists if and only if Algorithm 1 terminates in part c of a step. That is, each

step’s HTTS gives a feasible allocation, and the algorithm did not terminate in part b of a

step.

2. Algorithm 1 finds a strict core allocation, when one exists.

2There always exists an SCC with no outgoing arcs. To see this, consider the condensation (contract each SCC
to a single vertex). The result is a directed acyclic graph, which has at least one sink. The sink is the (contracted)
desired SCC with no outgoing arcs. Note that there may be multiple SCCs with no outgoing arcs. If so, pick any
arbitrarily.
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3. The strict core allocation is unique, when it exists.3

4. Algorithm 1 has time complexity O(|H|2 + |H||I|).

One immediate corollary is that if |H| is fixed, our algorithm is O(|I|). That is, if house types

are taken as fixed, and the economy expands by adding more agents and houses (within the existing

types), complexity is linear.

Before the proof of Theorem 1, we give the following example to illustrate it and Algorithm 1.

Example 1. Consider the house-swapping market (I,H,E,≿) where

I = {1, 2, 3, 4, 5}

H = {h1, h2, h3, h4}

E(1) = h1, E(2) = E(3) = h2, E(4) = h3, E(5) = h4

and ≿= {≿1,≿2,≿3,≿4,≿5} is given by

h2 ≻1 ...

h1 ≻2 ...

h3 ≻3 h2 ≻3 ...

h4 ≻4 ...

h3 ≻5 ...

1. Step 1 : Set R1 = H. Construct the directed graph D(R1, E1) where (h, h′) ∈ E1 if Bi(R1) =

h′ for some i ∈ E−1(h). That is, some owner of h top ranks h′. There are two SCCs

in D(R1, E1): {h1, h2} and {h3, h4}. Only S = {h3, h4} has no outgoing arcs. Then set

H1 = {h3, h4} and I1 = {4, 5}.

(a) Assign µ(4) = h4;µ(5) = h3.

(b) Check that this is feasible for I1. We have

∣∣E−1(h3) ∩ I1
∣∣ = |{4}| = 1

|{i : Bi(H1) = h3, i ∈ I1}| = |{5}| = 1

and likewise for h4, so this is feasible.

(c) Set R2 = R1 \H1 = {h1, h2} and continue to Step 2.

3Recall the definition of an allocation is a matching between agents and house types. The individual identities of
the houses do not matter.
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2. Step 2 : Construct the directed graph D(R2, E2) where (h, h′) ∈ E2 if Bi(R2) = h′ for some

i ∈ E−1(h). That is, some owner of h top ranks h′ among the remaining houses R2 = {h1, h2}.
The entire graph forms an SCC, so set H2 = {h1, h2} and I2 = {1, 2, 3}.

(a) Assign µ(1) = h2;µ(2) = h1;µ(3) = h2.

(b) Check that this is feasible for I2 (it is).

(c) Set R3 = R2\H2 = ∅. So the algorithm terminates.

Therefore, a House Top Trading Segmentation of H is given by

H =
{
H1 = {h3, h4}, H2 = {h1, h2}

}
.

h1 h2

h3 h4 H1

R2

Step 1

h1 h2 H2

Step 2

Figure 1: Applying Algorithm 1 to Example 1.

By Theorem 1, the unique strict core of this market is given by

µ(1) = h2

µ(2) = h1

µ(3) = h2

µ(4) = h4

µ(5) = h3

4.1 Proof of Theorem 1

The proofs for the strict core claims unsurprisingly follow Gale’s proof for TTC. The first key

insight is that by focusing on house types as nodes (instead of agents), we ensure that we remove

all copies of a house at the same time. This lets us easily deal with objective indifferences. The
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second key insight is that when we assign houses within an SCC without outgoing arcs, we assign

a set of houses and their owners at the same time.

Proof of Claim 2. Let (I,H,E,≿) be a market, and let µHTTS be the allocation produced by

Algorithm 1. That is, the algorithm terminated in part c of some step.

We first argue that µHTTS is indeed a feasible allocation. At each step, we arrive at a house

trading segment Hd. Note that Hd has no outgoing arcs in Dd. Thus all agents endowed with

a house h ∈ Hd (denoted Id) top-rank a house in Hd from among the remaining houses. By our

assumption that Algorithm 1 terminated in part c (and not part b) of some step, we know that

µHTTS is feasible for Id. Part c of this step removes Hd and thus Id from further consideration.

Thus {H1, ...,Hd, ...,HK} and {I1, ..., Id, ..., IK} partition the house types and agents, respectively.

If µ is feasible for each Id, then it is feasible for I.

Toward a contradiction, suppose there is a blocking coalition I ′ and sub-allocation µ′.

For at least one agent i ∈ I, µ′(i) ≻ µHTTS(i). Consider the step d at which i was assigned

in Algorithm 1. By construction, µHTTS(i) = Bi(Hd) = Bi (∪d′≥dHd′). So it must be that

µ′(i) ∈ ∪d′<dHd′ . Feasibility of µ′ implies that there is some i′ ∈ Ik for k < d such that µ′(i′) ∈
∪k′>kHk′ . But then µ′(i′) ≺ µHTTS(i′), so this is not a blocking coalition. In other words, for

µ′(i) ≻ µHTTS(i), i must be assigned to a house from an earlier segment. But then an agent from an

earlier segment must be assigned to a house from a later segment, which is strictly dispreferred.

Proof of Claim 3. Let (I,H,E,≿) be a market, and let µHTTS be the allocation produced by

Algorithm 1. That is, the algorithm terminated in a part c. Let µ′ be another strict core allocation.

We again show µ′ = µHTTS by strong induction on the number of steps in HTTS.

Base claim. Consider H1 and I1. We have µHTTS(i) ≿i µ′(i) for all i ∈ I1, since every i ∈ I1

receives his favorite house. Since µHTTS is feasible for I1 and µ′ is in the strict core, we must

also have µ′(i) ≿i µ
HTTS(i) for all i ∈ I1. (Otherwise I1 can form a blocking coalition with

sub-allocation µHTTS |I1 .) But then µHTTS(i) = µ′(i) for i ∈ I1.

Claim d. Assume µHTTS(i) = µ′(i) for all i ∈ I1 ∪ · · · ∪ Id−1. Then µ′(Id) ⊆ ∪d′≥dHd′ . That is,

the houses assigned to agents in Id are drawn from the houses that remain after step d − 1.

By construction, we have µHTTS(i) ≿i h for any h ∈ ∪d′≥dHd′ for all i ∈ Id, so we have

µHTTS(i) ≿i µ
′(i) for i ∈ Id. Since µHTTS is feasible for Ik and µ′ is in the strict core, we

must have µ′(i) ≿i µ
HTTS(i) for all i ∈ Id. But then µHTTS(i) = µ′(i) for i ∈ Id.

Proof of Claim 1. We now have that µHTTS is the unique strict core allocation, when it exists.

Thus, if µHTTS is not feasible, there is no strict core allocation.

7



Proof of Claim 4. We apply Tarjan’s algorithm (Tarjan, 1972). For any directed graph G =

D(V,E), the order in which Tarjan’s algorithm returns the SCCs of G is a reverse topological order-

ing of the condensation GSCC = D(V SCC , ESCC) of G.4. Concretely, suppose S = {S1, S2, ..., Sℓ}
is the set of SCCs of G in the order in which they were returned by Tarjan’s algorithm (i.e., S1 is

the first SCC returned, S2 is the second, etc.). Then S1 must be a sink of GSCC . Therefore, S1 is

an SCC of G with no outgoing arcs.

At each step d of Algorithm 1, we perform two computations. First, we use Tarjan’s algorithm

to identify an SCC Hd with no outgoing arcs.5 Tarjan’s algorithm has time complexity O(|H|+ |I|).
Second, we check whether the strict core allocation is feasible for Id = E−1(Hd). That is, for each

h ∈ Hd, we check
∣∣E−1(h) ∩ Id

∣∣ = |{i : Bi(Hd) = h, i ∈ Id}|. This has time complexity O(|H|).
Therefore, each step of Algorithm 1 has time complexity O(|H|+ |I|).

Since Algorithm 1 terminates in at most |H| steps, it has time complexity O(|H|2 + |H||I|).

5 Conclusion

In this paper, we study the house-swapping problem in a setting where agents’ preferences may

contain “objective indifferences.” We assume that agents have strict preferences over a set of house

types and that multiple agents may be endowed with copies of the same house type. We derive a

square-polynomial time algorithm that finds the unique strict core allocation of a house-swapping

market, if it exists. This is faster than the methods that are needed to find strict core allocations

in the setting where agents are allowed to have subjective indifferences. Moreover, our algorithm

is interpretable as a series of “house top trading segments”, which are analogous to top trading

cycles. The condition for the non-emptiness of the strict core is readily interpretable – within each

house top trading segment, supply and demand for each house type are equal.
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