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Abstract

We study the exchange of indivisible objects (“house-swapping”) when the goods may be commodified.

In many house-swapping markets, some objects may effectively be indistinguishable from one another,

as with dorm rooms or school seats. Thus, all agents are indifferent between copies of the same variety.

We call this setting “commodified objects”. Top trading cycles (TTC) with fixed tie-breaking has been

suggested and used in practice to deal with indifferences in house-swapping problems. However, with

general indifferences, TTC with fixed tie-breaking is not Pareto efficient or group strategy-proof. Further,

it may not select the strict core, even when it exists. In our setting, agents are always and only indifferent

between copies of objects. In this setting, TTC with fixed tie-breaking maintains Pareto efficiency, group

strategy-proofness, and strict core selection.

1 Introduction

Important markets such as living donor organ transplants, dorm assignments, and school choice can be
modeled as “house-swapping” problems. In a house-swapping problem, each agent is endowed with an
indivisible object (called a “house”) and has preferences over the set of objects. The objective is to sensibly
re-allocate these objects among the agents. Monetary transfers are disallowed, and participants have property
rights to their own endowments. Shapley and Scarf (1974) first introduce house-swapping when agents have
strict preferences over houses. The usual stability notion is the core; an allocation is in the core if no
subset of agents would prefer to trade their endowments among themselves. Gale’s top trading cycles (TTC)
algorithm finds an allocation in strong core. Roth and Postlewaite (1977) further show that the strict core
is non-empty, unique, and Pareto efficient. Roth (1982) shows that TTC is strategy-proof; Moulin (1995)
shows it is group strategy-proof. These properties make TTC a normatively attractive algorithm.

The assumption that preferences are strict is quite strong. In particular, if the houses are not unique,
agents should naturally be indifferent. We present a model of house-swapping where there are indistinguish-
able copies of objects (“types”). The model restricts agents to be always indifferent between copies of the
same object, but never between distinct objects. We call this problem “house-swapping with commodified
objects”. This models important situations where the house-swapping model is applied in practice. For
example, in dorm or public housing assignments, many units are effectively the same (same floor plan in the

∗WORKING TITLE. We are grateful to Haluk Ergin for guidance. We also thank seminar attendants at UC Berkeley for
helpful comments; in particular, Federico Echenique, Ivan Balbuzanov, and Yuichiro Kamada.

†UC Berkeley. willsandholtz@econ.berkeley.edu
‡Defense Resources Management Institute, US Department of Defense. andrew.tai@nps.edu. The views expressed in this

manuscript are those solely of the authors and do not reflect the policy or views of the Department of Defense.

1



same building, for example). Likewise in school assignments, different slots at the same school are indistin-
guishable. We see commodified goods as a minimalist model of indifferences, where indifferences are most
plausible (or perhaps undeniable!).

In the fully general setting where agents’ preferences may contain any indifferences, TTC with fixed tie
breaking is often used in practice; ties in preference orders are broken by some external rule. Abdulkadrioglu
and Sönmez (2003) propose it in the setting of school choice with priorities. However, it is not Pareto
efficient or group strategy-proof. Indeed, Ehlers (2002) shows that these two properties are not compatible
in house-swapping with indifferences. Additionally, the strict core may be empty or non-unique, and TTC
with fixed tie breaking may not select a strict core allocation when one exists.

Commodified goods adds structure to the general case of indifferences by constraining any indifferences to
be universal among agents and by limiting the set of preference rankings agents may submit. While the strong
core still may not exist, it is essentially unique when it does exist. We show that in house-swapping with
commodified goods, TTC with fixed tie-breaking recovers Pareto efficiency and group strategy-proofness. It
also selects the unique strong core when it exists, and selects an element in the weak core otherwise. We
also show that the commodified goods setting is a maximal setting such that these properties hold, in the
sense that allowing a superset of possible preference orderings breaks each property.

In summary, we present a reasonable model of indifferences, commodified goods, which can capture set-
tings where house-swapping is used in practice. Further, there is an advantage in working in the commodified
goods setting over the more general setting of full indifferences, as TTC with fixed tie breaking preserves
Pareto efficiency, core selection, and group strategyproofness. Thus we also provide a strong normative
argument for using TTC with fixed tie-breaking in settings like school choice and dorm assignment.

In addition to the papers already mentioned, our paper contributes to a broader literature on object
assignment problems. A number of important papers deal with the object allocation problem without
endowments; e.g. Pápai (2000) and Ehlers et al. (2002). Recently, others have proposed mechanisms for the
house swapping model with indifferences; in particular, Quint and Wako (2004) and Jaramillo and Manjunath
(2012).

Section 2 presents the formal notation. Section 3 provides the main results. Section 4 concludes.

2 Model

We present the model primitives. First we recount the classical Shapley and Scarf (1974) domain. Afterwards
we introduce our “commodified objects” domain.

We now present the general house-swapping model (with distinguishable objects). Let N = {1, . . . , n} be
a finite set of agents, with generic member i. Let H = {h1, . . . , hn} be a set of houses, with generic member
h. Every agent is endowed with one object, given by a bijection w : N → H. The set of all endowments is
W (N,H) or W for short. An allocation is an assignment of an object to each agent, given by a bijection
x : N → H. The set of all allocations is likewise X(N,H) or X. We denote x(i) = xi and w(i) = wi for
short.

Each agent has preferences Ri over H. A preference profile is R = (R1, R2, ..., Rn). Let Ri be the set
of i’s possible preferences. If every Ri is the set of strict preference orderings, RN

i is the classical strict
preferences domain. If every Ri is the set of weak preference orderings, RN

i is the classical general
indifferences domain.
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Our main domain is commodified objects. Let H = {H1, H2, . . . ,Hk} be a partition of H. Each agent
i has a strict linear order ≥i over H, and preferences over H are derived from this. Formally, for h ∈ Hh

and h′ ∈ Hh′ ,
hRih

′ ⇐⇒ Hh ≥i Hh′

The partition H defines the house types. Ri(H) is set of preferences given by the partition; we sometimes
suppress (H) from the notation when context makes it clear. Given H, R(H) = Ri(H)N is a commodified
objects domain. Note that all agents are indifferent between houses in the same partition and have strict
rankings between houses in different partitions. Because of this, we refer to indifference classes for the
domain with the understanding that everyone shares the same indifference classes. In this notation, we treat
the commodified objects as having identities. I.e. we keep track of the objects in H1; however, the objects
are indistinct and always have the same welfare implications.

Commodified objects models settings where some objects are indistinguishable to all participants. An
example is dorm rooms or public housing, where there may be many units of the same basic layout and
amenities.

2.1 Rules

This subsection recounts formalities on rules (mechanisms) and top trading cycles. Familiar readers may
safely skip this subsection.

A market is a tuple (N,H,w,R). A rule is a function f : R → X; given a preference profile, it produces
an allocation. When it is unimportant or clear, we suppress inputs from the notation. Denote fi(R) to be
i’s allocation; and fQ = {fi : i ∈ Q}. Fix a rule f and setting. We work with the following desiderata
(“axioms”).

A rule is Pareto efficient if it always produces Pareto efficient allocations.

Pareto efficiency (PE). For all R ∈ R, there is no other allocation x ∈ X such that xiRifi for all i ∈ N

and xiPifi for at least one i.

Strategy-proofness ensures no agent can improve his outcome by submitting false preferences. That is, agents
are weakly incentivized to tell the truth.

Strategy-proofness (SP). For all R ∈ R, for any q ∈ N and R′
q, fq(R)Rqfq(R

′
q, R−q).

Group strategy-proofness is stronger than SP. It requires that no coalition of agents can improve their
outcomes by submitting false preferences. Note that in the following, we require both the true preferences
and potential misreported preferences to come from the same set R.

Group strategy-proofness (GSP). For all R ∈ R, there do not exist Q ⊆ N and R′
Q such that

(R′
Q, R−Q) ∈ R and fq(R

′
Q, R−Q)Rqfq(R) for all q ∈ Q with fq(R

′
Q, R−Q)Pqfq(R) for at least one.

Individual rationality models the constraint of voluntary participation. It requires that agents do at least as
well as their own endowments.

Individual rationality (IR). For all w and R ∈ R, fiRiwi.

We also define the core, which is a property of allocations. An allocation is in the core if there is no subset
of agents who would rather trade their endowments among themselves.
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Definition 1. An allocation x is blocked if there exists a coalition N ′ ⊆ N and allocation x′ such that
w(N ′) = x′(N ′) and for all i ∈ N ′, x′

iRixi, with x′
iPixi for at least one. An allocation x is in the core if it

is not blocked.

The weak core is requires that all members of the coalition are strictly better off.

Definition 2. An allocation x is weakly blocked if there exists a coalition N ′ ⊆ N and allocation x′ such
that w(N ′) = x′(N ′) and for all i ∈ N ′, x′

iPixi. An allocation x is in the weak core if it is not weakly
blocked.

The core property models the restriction imposed by property rights. Notice that individual rationality
excludes blocking coalitions of size 1. The last axiom is core-selecting.

Core selecting (CS). For all R ∈ R and w ∈ W , f(R) is in the core, if the core is nonempty.

We will present results that commodified objects is a largest domain on which TTC≻ is PE or CS. It is
also “essentially” a largest domain on which TTC≻ is GSP (we will note the technicalities when we present
the result). By the “largest domain”, we mean the following.

Definition 3. A domain RN
i is (symmetric-) maximal for an axiom A and a rule f if:

1. f is A on RN
i

2. for any R̃i ⊋ Ri, f is not A on R̃N
i

3. (For symmetric maximal: if hPih
′ ̸∈ R̃i but hPih

′ ∈ R̃i then also h′Pih ∈ R̃i.)

Note that this definition of maximality depends on both the domain and the rule f , which differs from
elsewhere in the literature. Also note that we restrict to the same set of possible preferences for each agent
in both the maximal domain and for any expanded domain.

Symmetric maximality requires that if any indifference is broken, then both strict relations are added
to the domain. Of course, symmetric maximality is a weaker condition, as it restricts the possible domain
expansions. However, it is natural in a preference solicitation mechanism to allow either ranking. The third
restriction rules out situations where some agents may have a strict ranking only in a particular direction,
while others are indifferent.1 Our results for PE and CS will be with respect to maximality. Our GSP result
is with respect to symmetric maximality.

3 Top trading cycles with fixed tie breaking

In this paper, we analyze top trading cycles (with tie breaking) in the settings defined in the previous section.
For an extensive history, we refer the reader to Morill and Roth (2024). We briefly define TTC and TTC
with fixed tie-breaking.

Algorithm 1. Top Trading Cycles. Consider a market (N,H,w,R) under strict preferences. Draw a
graph with N as nodes.

1. Draw an arrow from each agent i to the owner (endowee) of his favorite remaining object.
1For example, a seat at a school with a scholarship is strictly preferred to a seat to the same school without one, unless a

student has outside (“last-dollar”) funds.
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2. There must exist at least one cycle; select one of them. For each agent in this cycle, give him the object
owned by the agent he is pointing at. Remove these agents from the graph.

3. If there are remaining agents, repeat from step 1.

We denote this as TTC(R).
TTC is only well defined with strict preferences, as step 1 requires a unique favorite object. In practice,

a fixed tie breaking rule is often used to resolve indifferences. Given N , let ≻= (≻1, . . . ,≻N ), where each
≻i is a strict linear order over N . This linear order will be used to break indifferences between objects (based
on their owners). Then let Ri,≻ be given by the following. For any j ̸= j′, let wjPi,≻wj′ if either

1. wjPiwj′ , or

2. wjIiwj′ and j ≻i j
′

Then Ri,≻ is a strict linear order over the individual houses. Example 1 illustrates a tie-break rule. Let
R≻ = (R1,≻, . . . , RN,≻). Given a fixed tie breaking rule, TTC with fixed tie breaking (TTC≻) is
TTC≻(R) = TTC(R≻). That is, the tie breaking rule is used to generate strict preferences, and TTC is
applied to the resulting profile. Formally, each tie breaking profile ≻ generates a different TTC with fixed
tie breaking rule.

Example 1. Let N = {1, 2, 3, 4}.

R1

w3, w4

w1, w2

+

≻1

1

2

3

4

→

R1,≻

w3

w4

w1

w2

TTC≻ is not Pareto efficient in general indifferences. Example 2 gives the simplest case.

Example 2. Let N = {1, 2} and preferences be given by w1I1w2, w1P2w2. Let ≻i= (1, 2) for both agents.
In the first round of TTC≻, both agents point to themselves. The allocation is x = (w1, w2), which is Pareto
dominated by x′ = (w2, w1).

The example illustrates the problem with indifferences – TTC≻ may not take advantage of Pareto gains
made possible by the indifferences. The commodified objects domain rules out these situations. Our first
main result is that TTC≻ is Pareto efficient in commodified objects.

Proposition 1. TTC≻ is PE for all tie-breaking profiles ≻ in any R(H). Further, each R(H) is a maximal
domain on which TTC≻ is PE for all ≻.

Proof. Appendix.

The intuition is that commodified goods rules out situations like in Example 2. In contrast, under
commodified goods, agent 1 will have to leave his allocated indifference class in order to benefit agent 2.
Any more general domain will reintroduce this possibility.

5



Our second result deals with the core. In general indifferences, the set of core allocations may not be a
singleton. There may be no core allocations or multiple. Likewise, the set of core allocations may be empty
or multi-valued in commodified objects, as Example 3 illustrates. However, the core is essentially unique
when it exists, in that all core allocations are re-arrangements of indistinguishable copies.

Example 3. Let R be given by the following.

R1 R2 R3

w2, w3 w1 w1

w1 w2, w3 w2, w3

It is straight forward to check that the core is empty.

Furthermore, TTC≻ always selects the core for any tie-breaking rule ≻ in commodified goods. This is in
contrast to the result from Ehlers (2014) for general indifferences, where only the weak core is guaranteed.

Proposition 2. Let x = TTC≻(R) and R ∈ R(H). For any ≻,

1. x is in the weak core.

2. if the core exists, then x is in the core. That is, TTC≻ is CS.

3. if y is in the core, then xiIiyi for all i ∈ N .

Further, each R(H) is a maximal domain on which TTC≻ is CS.

Point 3 is the “essential uniqueness” of the core. Since indifferences are universal, it says that all core
assignments are rearrangements of copies of object types. Point 2 is implied by 3, but listed separately for
clarity. In summary, the TTC≻ always produces an allocation in the weak core, produces an allocation in
the core when it exists, and the core allocation is unique up to the identities of the commodified objects.

Proof. Appendix.

The intuition is to that for Pareto efficiency; note any allocation in the core is Pareto efficient. Under
general indifferences, the core may be multi-valued due to re-arranging objects that agents are indifferent
between. Under commodified goods, this is simply re-arranging copies of indistinguishable objects.

Our third result is that TTC≻ is group strategyproof in commodified objects. TTC≻ is not GSP in
general indifferences. Example 4 illustrates; an agent can break his own indifference to benefit a coalition
member without harming himself.

Example 4. Let R and R′ be given by the following, and let Q = {1, 3}.

R1 R2 R3 R′
1

w2, w3 w1 w1 w3

w1 w2 w2 w1, w2

w3 w3

Let ≻i= (1, 2, 3) for all i. Then TTC≻(R) = (w2, w1, w3). But if 1 misreports R′
1, then TTC≻(R

′) =

(w3, w2, w1). Then 1 is indifferent, and 3 is strictly better off.
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Commodified objects eliminates possibilities like the above in a subtle way. The model imposes “exoge-
nous” indifferences; agents can only report they are indifferent between all objects in the same indifference
class given by H.2

Proposition 3. TTC≻ is GSP for all tie-breaking profiles ≻ in any R(H). Further, each R(H) is a
symmetric-maximal domain on which TTC≻ is GSP.

Proof. Appendix.

The proof is similar to that in Moulin (1995), relying on the restriction that agents can only report
their indifference class and not arbitrarily break ties within them. This rules out cases like Example 4. A
profitably deviating coalition would require a “first mover” misreport in order to obtain a welfare equivalent
but distinct object (see also the proof in Bird, 1984; Sandholtz and Tai, 2024), which commodified goods
rules out. We also note that R(H) is not a maximal domain on which TTC≻ is GSP with the following
example.

Example 5. Consider H = {h1, h2} and H = {{h1, h2}}. Let R′ = R(H) ∪ (h1Ph2). That is, expand the
domain by including the ordering h1Ph2. It can be verified that TTC≻ is still group strategyproof.

If R1 = R2 = (1P1) or R1 = R2 = (1I2), then of course there is no possible group manipulation. Now
let h1 = w1 and h2 = w2, and 1 ≻i 2 for both i. Consider two possible (true) preference profiles:

R1 R2

h1 h1, h2

h2

or
R1 R2

h1, h2 h1

h2

In the first case, there is no improving allocation. In the second case, it would be advantageous for agent
1 to claim h2 and pass along h1, but this is not possible, since this preference is not in R′. Now let h1 = w2

and h2 = w1. In the first case, there is again no improving allocation (they trade in TTC≻). In the second
case, there is again no improving allocation.

The following theorem collects the results presented above.

Theorem 1. TTC≻ is PE, CS, and GSP for all tie-breaking profiles ≻ in any R(H). Each R(H) is a
maximal domain on which TTC≻ is PE and CS. Each R(H) is a symmetric-maximal domain on which
TTC≻ is GSP. Additionally, if the core of (N,w,R) for R ∈ R(H), it is unique up to the identity of the
objects.

The results and examples suggest a practical issue – selection of H given the set of objects H. In
some cases the commodification may be obvious; e.g., identical tasks or slots in a program. In other cases,
there may be some ambiguity; e.g., are two dorms of the same floor plan but on different floors equivalent?
Inappropriately combining two indifference classes can lead to efficiency losses in the spirit of Example 2.
On the other hand, splitting an indifference class can allow group manipulations like in Example 4. We leave
formal results on the tradeoff as future work.

2Constraining the reports is also an important difference from Ehlers (2002).
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4 Conclusion

The house-swapping market is a classic model in economic theory with applications to important markets
like housing assignment, school choice, and organ exchange. Surprisingly, it took about thirty years from
Shapley and Scarf (1974) to generalize results to indifferences. Since then, there has been a significant
amount of work dealing with indifferences.

TTC with fixed tie-breaking is a commonly used mechanism for house-swapping problems with indif-
ferences. Unfortunately, it does not preserve Pareto efficiency, group strategyproofness, or core selection in
general indifferences.

We have proposed a model of a particular kind of indifferences, “commodified objects”, where there are
indistinguishable copies of objects. Commodified objects captures many of the situations where house-
swapping is relevant. (Consider for example housing assignment with many indistinguishable dorm rooms.)
Therefore it is a compelling case to include in a model of house-swapping.

Fortunately, TTC with fixed tie-breaking preserves the aforementioned properties – Pareto efficiency,
group strategyproofness, and core selection – on commodified objects. Moreso, Pareto efficiency and core
selection fail on any larger domains. While group strategyproofness is preserved on some larger domains,
it fails on any “symmetrically larger” domain. Thus commodified objects is not only a compelling case to
include, but also the most general case preserving these properties.

We leave a characterization of TTC with fixed tie-breaking on commodified goods also remains an open
question.
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Appendix

The appendix contains the proofs of the results in the main text. Throughout, for a partition H, let
η : H → H associate an object h with its indifference class under R(H). Additionally, given a market and
TTC≻(R), denote Sk(R) as the kth cycle executed in TTC≻(R).3

It is immediate that TTC≻ is IR, as any agent pointing at his own endowment must be assigned to it.
We will use this fact for the some of the proofs.

Proposition (Proposition 1). TTC≻ is PE for all tie-breaking profiles ≻ in any R(H). Further, each R(H)

is a maximal domain on which TTC≻ is PE for all ≻.

Proof. The result is trivial for |N | = 1. Now let |N | ≥ 2.
We show that PE is satisfied on commodified goods. Consider any (N,H,w). Let H be any partition

and let R ∈ R(H). If H = {H}, the result is trivial, so suppose it the partition has at least two subsets.
Let x = TTC≻(R), and suppose y ∈ X Pareto dominates x. Let W = {i : yiPixi} be the set of agents who
strictly improve under y, which must be nonempty. Let i ∈ W be the first agent in W assigned in TTC≻(R).

Denote i ∈ Sk(R) and η(yi) = Hy. We have that yiPixi. . Note that at step k, no objects in Hy were
available, otherwise i would have pointed to one of them rather than at xi.

Since yiPixi, we have xi /∈ Hy but yi ∈ Hy. Thus there must be another agent j such that xj ∈ Hy but
yj /∈ Hy. Since y Pareto dominates x, yjRjxj . Since yj and xj are not in the same indifference class, we
have yjPjxj . (This is where commodified objects is used.)

Then j ∈ W . Further, j must have been assigned before step k, since no object in Hy was available at
step k. This contradicts the presumption that i was the first agent in W assigned.

We now prove that any R(H) (just denoted R here) is maximal on which TTC≻ is PE. Let R̃i ⊃ Ri and
denote R̃ = R̃N

i . We will show there exists a w, R ∈ R̃, and ≻ such that x = TTC≻(R) is not PE.
It must be that R̃i contains some preference orderings R′, R′′ such that for h1, h2 ∈ H we have h1I

′h2

but h1P
′′h2. Thus R̃ contains a preference profile such that h1I1h2 but h1P2h2. (The labels 1 and 2 are

without loss of generality.)
Let w1 = h1 and w2 = h2. Let Rj for j ∈ {3, . . . , N} top-rank wj . Finally, let ≻i have i as the highest

priority for all i. It is straight-forward that TTC≻(R) = w. However, this is Pareto dominated by the
allocation where 1 and 2 trade assignments.

Proposition (Proposition 2). Let x = TTC≻(R) and R ∈ R(H). For any ≻,

1. x is in the weak core.

2. if the core exists, then x is in the core. That is, TTC≻ is CS.

3. if y is in the core, then xiIiyi for all i ∈ N .

Further, each R(H) is a maximal domain on which TTC≻ is CS.

Proof. We first note a fact about x = TTC≻(R). If i ∈ Sℓ(R) and hPixi, then h was assigned in a cycle
before ℓ. This follows from the definitions; hPixi implies hPi,≻xi, and TTC≻(R) = TTC(R≻). Under
TTC(R≻), an object hPi,≻xi must have been assigned earlier than ℓ, otherwise i would have pointed to it.

3Note that Sk may not be unique, since multiple cycles may appear in step 2 of Algorithm 1.
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(1.) Let R ∈ R(H) and denote x = TTC≻(R). Suppose there is a weakly blocking coalition N ′ ⊆ N

with allocation y such that yiPixi for all i ∈ N . We show by induction on the cycles of TTC≻(R) that N is
empty.

Step 1. All i ∈ S1(R) received one of their top-ranked objects, so they cannot be in N ′.

Step k. Suppose N ′ does not include any members of earlier cycles. Now consider i ∈ Sk(R). If yiPixi, then yi

must be an object assigned in ∪k−1
ℓ=1Sℓ(R). But no agents in ∪k−1

ℓ=1Sℓ(R) are in N ′, so it is not feasible
to include i in N ′ either. Thus no agents in Sk(R) are in N ′.

Then N ′ is empty, completing the proof of this claim.
(2.) 2 is implied by 3.
(3.) Suppose the core of (N,H,w,R) is nonempty and contains y. Denote x = TTC≻(R). We show

xiIiyi (∗) for all i by induction on the cycles.

Step 1. All i ∈ S1(R) received one of their top-ranked objects, so xiRiyi. Suppose (∗) is not true for S1(R).
Then there is some i ∈ S1(R) such that xiPiyi. But then S1(R) and x block against y, a contradiction.

Step k. Suppose that (∗) is true for all cycles before k. Suppose for some i ∈ Sk(R) we have yiPixi. Then yi

was assigned in a cycle before k. Further, yi and xi are in different indifference classes. Thus under y

if yi is assigned to i, an agent j in (∩k−1
ℓ=1Sℓ(R)) ∩Hyi must be assigned an object outside of Hyi . But

then it cannot be that yjIjxj , a contradiction.4 Thus we have that xiRiyi for all i ∈ Sk(R). Suppose
(∗) is not true for Sk(R). Then there is some i ∈ Sk(R) such that xiPiyi. But then Sk(R) and x block
against y, a contradiction.

Then xiIiyi for all i, as desired.
We now prove the maximality claim. Towards a contradiction, the setup is the same as in the proof of

Proposition 1. We recount it here for convenience. Denote R(H) = R. Let R̃i ⊋ Ri and denote R̃ = R̃N
i .

It must be that R̃ contains a preference profile such that h1I1h2 but h1P2h2, and either R1 or R2 is in Ri.
Let w1 = h1 and w2 = h2. Let Rj for j ∈ {3, . . . , N} top-rank wj . Finally, let ≻i have i as the highest

priority for all i. It is straight-forward that TTC≻(R) = w, which is blocked by x = (w2, w1, w3, w4, ..., wN ).
We seek to show x is in the strict core for some R ∈ R̃ compatible with the above.

Let exactly one of R1, R2 be in Ri.
If R1 ∈ Ri, then η(w1) = η(w2). Further, we can suppose that R1 top-ranks w1 and its indifference class

(since this preference exists in the original domain). Also suppose that w1 is the highest ranked member of
η(w1) under R2. This is without loss of generality since 1’s identity was generic. In order for 2 to receive a
strictly better object, he must receive an object outside of η(w1) = η(w2). Recall that N \ {1, 2} all received
their own endowment, which was a favorite object, and 1 received an object in η(w1) which is likewise a
favorite. In any potential blocking coalition, 2 must receive some h ̸∈ η(w1). Thus some other member of
this coalition must be endowed with some object in η(h) but receive an object not in η(h), making him
strictly worse off.

Now suppose R2 ∈ Ri. Then η(w1) ̸= η(w2). Further, suppose that there do not exist h, h′ such that
hP1h

′ but η(h) = η(h′), else we can apply the previous case. Suppose that 2 top-ranks w1 and its indifference
class, so all N \ {1} received a favorite object. Again, N \ {1, 2} all received their own endowment, which

4This is where commodified goods is used – this claim fails in general indifferences.
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was a favorite object. Then in any potential blocking coalition, 1 must receive an object h strictly better
than w2. So h ̸∈ η(w2). Thus some other member of this coalition must be endowed with an object in η(h)

but receive an object not in η(h), making him strictly worse off.

We now present the proof that TTC≻ is GSP in commodified objects. The proof follows Moulin (1995)
(Lemma 3.3), which proves GSP for strict preferences. It is illustrative to see where the restriction on
commodified goods is used to preserve the logic.

Proposition (Proposition 3). TTC≻ is GSP for all tie-breaking profiles ≻ in any R(H). Further, each
R(H) is a symmetric-maximal domain on which TTC≻ is GSP.

Proof. Let R ∈ R(H), and denote x = TTC≻(R). Let St(R) be the cycles of TTC≻(R). Suppose Q ⊆ N is
a coalition reporting R′ ∈ R(H), and denote x′ = TTC≻(R

′). Suppose that x′Rix for all i ∈ Q. The proof
is by induction on the cycles of TTC≻(R) containing Q.

Let t1 be the smallest index such that St1(R)∩Q is nonempty; that is, the first cycle where member(s) of
Q are assigned. By definition of TTC≻, for all j ∈ ∪t1−1

ℓ=1 Sℓ(R), xj = x′
j . Thus at step t1, the same objects

remain under both TTC≻(R) and TTC≻(R
′). For i ∈ St1(R) ∩ Q, the best remaining objects are those in

η(xi). But i already reported η(xi) and received some xi ∈ η(xi). Thus xi = x′
i and at step t1 +1, the same

set of objects remain under both TTC≻(R) and TTC≻(R
′). (This is where commodified goods is applied.

This step fails under general indifferences, as i could report and obtain a welfare equivalent but distinct
object.)

Now consider the step tℓ such that Stℓ(R) ∩ Q is nonempty. Suppose that xi = x′
i for all i ∈ Stk for

k ∈ {1, ..., ℓ − 1}. Then at step tℓ, the same objects remain under both TTC≻(R) and TTC≻(R
′). The

remainder of the argument follows exactly as above.
We now prove the symmetric-maximality claim. Again, the setup is the same as in Proposition 1. Let

R̃i ⊃ Ri and denote R̃ = R̃N
i . We will show there exists a w, R ∈ R̃, and ≻ such that x = TTC≻(R) is not

GSP.
It must be that R̃i contains some preference orderings R′, R′′ such that for h1, h2 ∈ H we have h1I

′h2

but h1P
′′h2. Thus R̃ contains a preference profile such that h1I1h2 but h1P2h2. (The labels 1 and 2 are

without loss of generality.)
By the symmetry requirement, we also have h2P

′′h1. If R′′ was already in R, then h2P
′′h1 was already

included. If not, then R′′ is new and must add both relations.
Let w1 = h1 and w2 = h2. Let Rj for j ∈ {3, . . . , N} top-rank wj . Finally, let ≻i have i as the

highest priority for all i. It is straight-forward that TTC≻(R) = w. Let Q = {1, 2}, R′
1 = h2P

′
1h1, and

R′
2 = R2. Then TTC≻(R

′) = (h2, h1, w3, ..., wN ). Then x′
1R1x1 and x′

2P2x2, so this was a profitable group
manipulation.

A Other results

We introduce (Maskin) monotonicity. Let L(xi, Ri) = {h ∈ H : xiRih} be the lower contour set of Ri at xi.
The definition is standard; a rule f is monotone if when any set of agents move up their allocations in their
rankings, the allocation remains the same.
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Monotonicity (MON). Let x = f(R). For all R ∈ R, if R′ ∈ R is such that for all i ∈ N we have
L(xi, Ri) ⊆ L(xi, R

′
i), then x = f(R′).

Proposition 4. TTC≻ is MON for all tie-breaking profiles ≻ (for any complete, transitive, and reflexive
preferences).

Proof. Takamiya (2001) shows that TTC satisfies MON on strict preferences. Then TTC(R≻) is MON
according to R≻.

Since ≻ is an exogenous tie-breaking rule, L(xi, Ri,≻) ⊆ L(xi, R
′
i,≻) if and only if L(xi, Ri) ⊆ L(xi, R

′
i).

That is, if xi moves up the ranking according to R′
i,≻, it must have moved up according to R′

i, and vice
versa.

We also have that TTC(R≻) = TTC(R′
≻) if and only if TTC≻(R) = TTC≻(R

′). This is by definition,
as TTC(R≻) = TTC≻(R) and TTC(R′

≻) = TTC≻(R
′).

Thus MON according to R≻ implies if L(xi, Ri) ⊆ L(xi, R
′
i) then TTC(R≻) = TTC(R′

≻), as desired.
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